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Econometric Analysis of Continuous-Time

Arbitrage-Free Models of the

Term Structure of Interest Rates

Abstract

In this paper we discuss econometric analysis for exponential-a�ne term-structure
models using a panel-data approach. We assume that all zero-coupon yields are ob-
served with measurement error. Therefore, we take the state variables as unobserved,
and use the Kalman �lter to estimate the model parameters. For Gaussian mod-
els, this approach provides the exact likelihood function, but the main focus of the
paper is on non-Gaussian, exponential-a�ne models. Since the exact �lter and like-
lihood function are unknown in this case, the suggestion in the literature is to use a
QML estimator obtained from the �rst and second conditional moments of the state
variables. However, this QML estimator is not consistent.

We provide a detailed analysis of the problem, and, in that process, formulate gen-
eral conditions for consistency of QML estimators for linear, non-Gaussian state space
models. This analysis leads us to propose a modi�ed QML estimator for exponential-
a�ne term-structure models which ensures consistency. The basic idea is ignoring
information about conditional heteroskedasticity, but this suggests that the �nite
sample properties may not improve. A small-scale Monte Carlo study lends some
support to this conjecture, and also suggests that the asymptotic biases of the exist-
ing QML estimator are very small, and probably economically insigni�cant in most
cases.

In the empirical part of the paper we apply the Kalman �lter approach to estimate
Gaussian and non-Gaussian central-tendency models on US swap market data, and
we compare their implications for the yield curve.

JEL codes: C15, C51, G12, G13.

Keywords: Exponential-A�ne Models, Kalman Filter, State Space Models, Quasi
Maximum Likelihood (QML) Estimation.



1 Introduction

In this paper we consider estimation techniques for Markovian term-structure mod-
els, such as the models proposed by Vasicek (1977), Brennan and Schwartz (1979),
Langetieg (1980), Cox et al. (CIR) (1985), Longsta� and Schwartz (1992), and Du�e
and Kan (1996). These models have two separate, yet interrelated, implications for
the yield curve. The state variables, and the stochastic process governing their dy-
namics, simultaneously determine the shape of the yield curve at a given time (cross-
sectional implications) and the time-series movements of the yield curve (dynamic
implications).

Early contributions to the literature tended to analyze only one of these implica-
tions. Among the most cited studies are Brennan and Schwartz (1979), who focus
on the dynamic implications of their model, and Brown and Dybvig (1986) who esti-
mate the CIR model from bond prices observed on a single day. The \panel data"
approach, where the dynamic and cross-sectional implications are taken into account
simultaneously, generally provides more e�cient estimators of the model parameters.
Not surprisingly, most recent studies have followed this line of research.1

In general, the number of zero-coupon yields on a given date exceeds the number
of state variables, so the theoretical term-structure model cannot explain all variation
in the data.2 To overcome this problem, it is often assumed that the data are observed
with some form of measurement error, originating from, e.g., non-synchronous trad-
ing, rounding of prices, and bid-ask spreads.3 For example, Chen and Scott (1993)
and Du�e and Singleton (1997) estimate the m-factor CIR model by assuming that
yields at m maturities are measured without any error, whereas the remaining ma-
turities in the data set are contaminated by measurement error. By inverting the
bond-pricing formula, the �rst m yields are used as \instruments" for the state vari-
ables, and the exact likelihood function for the full data set is straightforward to
construct. A similar approach is used in Daves and Ehrhardt (1993), and Pearson
and Sun (1994).

Under an alternative assumption, all zero-coupon yields are measured with some
error. In this case, it is convenient to cast the term-structure model in state space

form, and use Kalman �lter to estimate the model parameters. The basic idea under-
lying this approach was put forth by Pennacchi (1991), and it has subsequently been
used in a series of papers dealing with the estimation of exponential-a�ne models, es-

1The main exception are papers that estimate Markovian term-structure models without a closed-

form solution for bond prices, see, e.g., A��t-Sahalia (1996a, 1996b), Andersen and Lund (1997), Chan

et al. (1992), Conley et al. (1997), Honor�e (1997), Nowman (1997), Stanton (1997), Tauchen (1997),

and Torous and Ball (1995). However, the rapidly increasing speed of computing equipment is likely

to change this within the foreseeable future. See Honor�e (1998) for further discussion, as well as an

implementation of this approach.
2Throughout this paper, it is implicitly understood that the data consist of zero-coupon yields.

Although such data may not be directly available to the econometrician, there is a variety of methods

for estimating zero-coupon yields from prices of coupon bonds, see Bliss (1996) and Anderson et al.

(1996) for recent surveys.
3There are a few exceptions, though. The \panel data" estimation technique proposed by Gibbons

and Ramaswamy (1993) does not rely on assumptions about measurement errors.
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pecially Gaussian and multi-factor CIR models. See Jegadeesh and Pennacchi (1996),
Ball and Torous (1996), Duan and Simonato (1995), Chen and Scott (1995), Santa-
Clara (1995), de Jong (1996), Zheng (1993), Gong and Remolona (1996a, 1996b),
Geyer and Pichler (1996), and Babbs and Nowman (1997).

If the term-structure model is Gaussian, the exact likelihood function is obtained
directly from the Kalman �lter algorithm. This ensures that parameter estimators are
consistent, asymptotically normally distributed, and e�cient. Unfortunately, these
desirable properties do not carry over to the case where non-Gaussian, exponential-
a�ne models are estimated by the Kalman �lter method. The exact likelihood func-
tion is not available in closed form, but a QML estimator can be constructed from
the �rst and second conditional moments of the state variables. Clearly, this involves
some e�ciency loss relative to maximum likelihood, but the QML estimator also loses
the consistency property, as pointed out by Duan and Simonato (1995).

In the present paper, we further analyze the problems associated with estimating
non-Gaussian models by the Kalman �lter method. Based on this analysis we propose
a modi�ed QML estimator which ensures consistency. Basically, the modi�cation
works by ignoring the conditional heteroskedasticity properties and non-negativity
restrictions of the state variables. We compare the �nite sample properties of the two
QML estimators in a small Monte Carlo study.

The paper is composed as follows. Section 2 reviews the �nance theory of Gaussian
term-structure models, and in section 3 we discuss the Kalman �lter method for
Gaussian models. This discussion forms the basis for our extensive analysis of non-
Gaussian (exponential-a�ne) models in section 4. Finally, section 5 contains an
empirical illustration of the Kalman �lter method, using US swap market data, and
section 6 concludes the paper.

2 A review of Gaussian term-structure models

The basic assumption of Gaussian term-structure models is that prices of all bonds
are functions of a m � 1 vector of state variables, Xt, whose dynamics are governed
by the stochastic di�erential equation

dXt = K (��Xt) dt+ �dWt; (1)

where � is a m � 1 vector, while K and � are m � m matrices. In this setup, the
matrix of volatility coe�cients, �, is diagonal, and the m Brownian motions in Wt

are correlated, with correlation matrix �. The short rate, or instantaneous interest
rate, rt, is given by a linear function of Xt:

rt = r(Xt) =
mX
i=1

wiXit = w0Xt (2)

Generally, the vector w consists of either zeros or ones.4

4Identi�cation conditions for general term-structure models, such as (1), are discussed by, inter

alia, Dai and Singleton (1997), Pang and Hodges (1995), and Babbs and Nowman (1997).
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A special case of this model is the well-known one-factor model of Vasicek (1977),
where rt is driven by the univariate stochastic di�erential equation

drt = �(�� rt)dt+ �dWt (3)

Here, the parameter � controls the degree of mean reversion towards the unconditional
mean �. The parameter � is the volatility, or di�usion coe�cient, of rt.

It can be shown [Arnold (1974, p. 130)] that the solution of (1) is given by:

Xs = e�K(s� t)Xt +
Z s

t
e�K(s� v)K� dv +

Z s

t
e�K(s� v)�dWv; (4)

where the matrix exponential function, exp(At), is formally de�ned as5

exp(At) =
1X
k=0

1

k!
(At)k :

If we condition on Xt, the only stochastic term in (4) is the last integral which can
be shown to be normally distributed [Arnold (1974, p. 74)]. Hence, it follows that
the conditional distribution of Xs is multivariate normal, with conditional mean

E[Xs jXt] = e�K(s� t)Xt +
Z s

t
e�K(s� v)K� dv

and conditional covariance matrix

Cov[Xs jXt] =
Z s

t
e�K(s� v)���e�K

0(s� v) dv:

We denote the current price of a zero-coupon bond, maturing at time T , by
P (t; T ). A standard arbitrage argument, see e.g. Vasicek (1977), can be used to show
that P (t; T ) satis�es the parabolic partial di�erential equation

1

2
Tr

 
@2P

@X@X 0
���

!
+
@P

@X 0
[K(��X)� ��] +

@P

@t
� r(X)P = 0; (5)

subject to the boundary condition P (T; T ) = 1. Note that the partial di�erential
equation (5) is constructed from the parameters of (1), the stochastic process govern-
ing the state variables, and a vector � containing the so-called market prices of risk,
or risk premia.

It is straightforward to show that the bond price is given by:

P (t; t+ �) = exp [A(�) +B(�)0Xt] ; (6)

where the functions A(�) and B(�) satisfy the joint system of ordinary di�erential
equations (ODEs):

dB(�)

d�
= �K0B(�)� w (7)

dA(�)

d�
=

1

2
Tr [B(�)B(�)0���] +B(�)0 [K�� ��]

=
1

2

mX
i=1

mX
j=1

�i�j�ijBi(�)Bj(�) +
mX
i=1

Bi(�)

0
@ mX
j=1

Kij�j � �i�i

1
A (8)

5Techniques for computing the matrix exponential function, and integrals thereof, are discussed

by Moler and Van Loan (1978), Van Loan (1978), and Golub and Van Loan (1989).
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with boundary conditions B(0) = 0 and A(0) = 0. Langetieg (1980) derive the
solution to (7) and (8) in the general case. Speci�cally, if K is non-singular, the
solution to (7) is given by:

B(�) =
�
Im � e�K

0�
�
(K0)

�1
w;

whereas A(�) is given by a rather lengthy expression involving several integrals of the
matrix exponential function.

The theoretical yield curve for a Gaussian model,

R(t; t+ �) =
� logP (t; t+ �)

�
= �

 
A(�)

�
+
B(�)0

�
Xt

!
; (9)

is an a�ne function of Xt, and by inverting this expression for m distinct maturities,
�1; : : : ; �m, the bond prices in (6) can be expressed in terms of these yields. Such
models are called yield-factor models by Du�e and Kan (1996). However, we argue
in section 3 that the bond price equation with unobserved state variables (6) is the
preferable starting point for the empirical analysis.

3 The empirical model for zero-coupon yields

For simplicity, we assume that the data set contains N zero-coupon yields with time-
invariant maturities.6 The observed yields at time tk, for k = 1; 2; : : : ; n, are denoted
by Rk = (R1k; : : : ; RNk), where Rik = � logP (tk; tk + �i)=�i.

In general N is greater than m, the number of state variables, so if the observed
zero-coupon yields correspond exactly to their theoretical counterparts, as de�ned by
(9), the distribution of Rk is singular. Needless to say, this situation is unlikely to
occur with real data. Moreover, due to exogenous factors such as non-synchronous
trading, rounding of prices, and bid-ask spreads, we should expect (small) discrep-
ancies from the theoretical term-structure model, and we commonly refer to these
deviations as measurement errors.

The presence of measurement errors means that we have to distinguish between
the theoretical term-structure model and the statistical model of the observed zero-
coupon yields, henceforth called the empirical model. In our view, allN maturities are
equally likely to be a�ected by measurement errors, and any selection of m \error-
free" maturities is bound to be arbitrary. It is worth emphasizing, though, that
the trade-o� might be di�erent for non-Gaussian models where the exact likelihood
function cannot be computed with the linear Kalman �lter.

3.1 The state space form of the empirical model

Under the usual assumption that measurement errors are additive and normally dis-
tributed, the so-called measurement equation of the state space model is given by:

Rk = d( ) + Z( )Xk + "k ; "k � N(0; H( )); (10)

6It is, of course, straightforward to generalize the Kalman �lter method to cases where the number

of yields and their maturities vary over time.
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where the i'th row of the matrices d (N � 1) and Z (N � d) are given by �A(�i)=�i
and �B(�i)0=�i, respectively. The vector  contains all parameters of the state space
model, and Xk is shorthand notation for Xtk .

Since we are estimating a continuous-time model using discretely sampled observa-
tions, the transition equation is obtained from the exact discrete-time distribution of
the state variables. In the Gaussian case, this distributions follows immediately from
the SDE solution (4). Hence, as shown in section 2, the discrete-time distribution is
a VAR(1) model with Gaussian innovations,

Xk = ck( ) + �k( )Xk�1 + uk; (11)

where

�k( ) = e�K(tk � tk�1) (12)

ck( ) =
Z tk

tk�1

e�K(tk � v)K� dv =
�
I � e�K(tk � tk�1)

�
� (13)

Vk( ) � Cov(uk) =
Z tk

tk�1

e�K(tk � v)���e�K
0(tk � v) dv (14)

The second equality in (13) only holds if K is non-singular, corresponding to a strictly
stationary stochastic process [Langetieg (1980)]. Finally, note that the VAR system
matrices, ck, �k and Vk, are time-varying unless the observations are equally spaced
in time.

3.2 The linear Kalman �lter recursions

The state space model represented by (10){(14) corresponds exactly to the standard
linear, Gaussian state space model discussed in, e.g., Harvey (1989). Hence, the
linear Kalman �lter provides the exact likelihood function, and the estimators of the
unobserved state variables correspond to conditional expectations given the observed
data (zero-coupon yields), and so they are optimal in a MSE (mean square error)
sense. To facilitate the discussion, let

Fk = (R1; R2; : : : ; Rk) (15)

denote the information set available at time tk.
The Kalman �lter algorithm consists of a sequence of prediction and update steps,

and the likelihood function is obtained as a by-product of these recursions. First, the
prediction step is given by

X̂kjk�1 = E [Xk j Fk�1] = ck + �kX̂k�1; (16)

with MSE matrix

�kjk�1 = E
h
(Xk � X̂kjk�1)(Xk � X̂kjk�1)

0 j Fk�1

i
= �k�k�1�

0

k + Vk: (17)
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Second, in the update step, the additional information provided by Rk is used to
obtain a more precise estimator of Xk:

X̂k = E [Xk j Fk] = X̂kjk�1 + �kjk�1Z
0F�1

k vk; (18)

with MSE matrix

�k = E
h
(Xk � X̂k)(Xk � X̂k)

0 j Fk

i
= �kjk�1 � �kjk�1Z

0F�1

k Z�kjk�1 (19)

=
�
��1kjk�1 + Z 0H�1Z

��1
;

where

vk = Rk � (d+ ZX̂kjk�1) (20)

Fk = Z�kjk�1Z
0 +H (21)

See Harvey (1989, ch. 3) for details of the derivations. The estimator of Xk in (18) is
often called the �ltered estimator.

3.3 The exact likelihood function

By the prediction error decomposition, see Harvey (1989), the exact log-likelihood
function for a linear, Gaussian state space model is given by:

logL(R1; :::; Rn ; ) =
nX

k=1

�N
2
log(2�)� 1

2
log jFkj �

1

2
v0kF

�1

k vk (22)

The vector of prediction errors,

vk = Rk � E [Rk j Fk�1] ;

and their covariance matrix,

Fk = Cov [Rk j Fk�1] = E [vkv
0

k j Fk�1] ;

are calculated in the update step of the linear Kalman �lter, cf. equations (20) and
(21).

The most time-consuming part of evaluating the likelihood function is the calcu-
lation of the inverse and the determinant of the N �N matrix Fk. Given that N is
often much greater than m, we can improve the computational e�ciency by using the
formulae

F�1

k = H�1 �H�1Z
�
��1kjk�1 + Z 0H�1Z

��1
Z 0H�1

jFkj = jHj � j�kjk�1j � j��1kjk�1 + Z 0H�1Zj

[see Harvey (1989, p. 108)]. Note that by using these formulae, we obtain the MSE
matrix of X̂k as a by-product, cf. the third line in equation (19).
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4 The Kalman �lter and exponential-a�ne models

4.1 Review of general exponential-a�ne models

Du�e and Kan (1996) propose a general class of term-structure models that include
Gaussian models as a special case. Under the original (true) probability measure, the
state variables, Xt, are governed the process

dXt = K (��Xt) dt+ C�(Xt)dWt; (23)

where �(Xt) is a m�m diagonal matrix whose i'th diagonal element given by

[�(Xt)]ii =
q
�i + � 0iXt: (24)

In equation (23), the m univariate Brownian motions are independent, and the de-
pendence structure between the innovations to Xt is captured by the m�m matrix
C. We refer to Du�e and Kan (1996) for a thorough discussion of conditions ensuring
that (23) is a well-de�ned process.

The short rate is speci�ed as in (2), i.e. rt = w0Xt for some vector w, usually
consisting of either zeros or ones. Finally, to complete the model speci�cation, we
make the following assumptions about the market prices of risk:

�(Xt) = �(Xt)� (25)

With the model speci�cation (23){(25), Du�e and Kan (1996) show that the price
of a zero-coupon bond, P (t; T ), is given by

P (t; t+ �) = exp [A(�) +B(�)0Xt] ;

where A(�) and B(�) are de�ned by the following ODE system:

dB(�)

d�
=

1

2

mX
i=1

[C 0B(�)]2i �i � K0B(�)�
mX
i=1

�i[C
0B(�)]i �i � w (26)

dA(�)

d�
=

1

2

mX
i=1

[C 0B(�)]2i �i +B(�)0K��
mX
i=1

�i[C
0B(�)]i �i; (27)

Here, [C 0B(�)]i refers to the i'th element of the m � 1 vector C 0B(�). Finding a
general closed-form solution to this ODE system does not seem to be possible, but
many special cases (models) can be solved in closed form. However, if a closed-
form solution for (26) and (27) is not available, the equations can always be solved
numerically with an ODE integrator, e.g. the Runge-Kutta method.7

To summarize, as in the Gaussian case there a linear (a�ne) relationship between
the state variables and the yield curve. Furthermore, the process (23) may remedy

7In the appendix, we outline a method for calculating analytical derivatives of B(�) and A(�) with

respect to the model parameters,  , which is applicable when the ODE system is solved numerically.
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some of the weaknesses of Gaussian models, namely the possibility of negative real-
izations for the short rate, and the absence of conditional heteroskedasticity in the
short-rate process. For an illustration, consider the one-factor CIR model,

drt = �(�� rt)dt+ �
p
rtdWt;

which is similar to the Vasicek speci�cation (3), except that the short rate is now
restricted to the non-negative part of the real line. In addition, the CIR volatility
speci�cation introduces a form of conditional heteroskedasticity which, in the context,
is often referred to as a \level e�ect", see Andersen and Lund (1997).

4.2 Discrete-time distribution of the state variables

Except for certain special cases, e.g. the CIR model, the exact discrete-time distri-
bution for (23) is not available in closed form. However, even if the full conditional
distribution could be derived, we are unable to exploit it when using the Kalman
�lter approach, cf. the discussion in the next section. Therefore, we focus on the
�rst and second conditional moments of Xt for which closed-form expressions are
straightforward to obtain, as we show in the following.8

First, it follows from Ito's lemma, as well as properties of the matrix exponential
function, that

d

�
eKtXt

�
= eKtKXt dt+ eKt dXt: (28)

Thus, if we substitute dXt from (23) into (28), we get

d

�
eKtXt

�
= eKtK� dt+ eKtC�(Xt)dWt; (29)

After integrating (29) from t to s, and premultiplying by exp(�Ks) on both sides of
the equation, we obtain the following representation for Xs:

Xs = e�K(s� t)Xt +
Z s

t
e�K(s� v)K� dv + �(t; s); (30)

where

�(t; s) =
Z s

t
e�K(s� v)C�(Xv)dWv: (31)

This representation is quite similar to (4), but since Xv still appears in the stochastic
integral (31), it is not the formal solution to the SDE (23). However, since stochastic
(Ito) integrals are martingales, the conditional expectation of �(t; s), given Xt, is zero.

Hence, the conditional mean of Xs follows directly from (30). Assuming further
that K is non-singular,

E [Xs jXt] = e�K(s� t)Xt +
�
Im � e�K(s� t)

�
� : (32)

8The expressions below for the �rst and second conditional moments are also derived in Duan

and Simonato (1995), de Jong (1996), and Fisher and Gilles (1996). Their approaches are quite

similar to ours, although they di�er in various respects.
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The conditional covariance matrix is given by:

Cov [Xs jXt] = E [�(t; s)�(t; s)0 j Xt]

= E

��Z s

t
e�K(s� v)C�(Xv)dWv

��Z s

t
e�K(s� u)C�(Xu)dWu

�0 ���� Xt

�

= E

�Z s

t
e�K(s� v)C�2(Xv)C

0e�K
0(s� v) dv

���� Xt

�

=
Z s

t
e�K(s� v)CE

h
�2(Xv) j Xt

i
C 0e�K

0(s� v) dv; (33)

where

E
h
�2(Xv) j Xt

i
ii
= �i + � 0iE [Xv j Xt]

and o�-diagonal elements are zero. The equality in third line in (33) is also a conse-
quence of the martingale property of stochastic integrals, see Arnold (1974, p. 65{67)
for a proof. Even though the �nal expression in (33) still needs to be worked out in
closed form, an inspection of the result shows that the conditional covariance matrix
for Xs is an a�ne function of Xt.

4.3 QML estimation of exponential-a�ne models: Part I

Generalizing the Kalman �lter estimation technique to non-Gaussian, exponential-
a�ne models turns out to be somewhat problematic. The structure of the measure-
ment equation is identical to the Gaussian case,

Rk = d( ) + Z( )Xk + "k; (34)

but the transition dynamics can no longer be represented by a Gaussian VAR(1)
model. With a non-Gaussian distribution for the state variables, or the measurement
errors for that matter, the linear Kalman �lter is no longer optimal, and we do not
obtain exact likelihood function. However, implementing the exact �ltering recursions
[see, e.g., Harvey (1989, pp. 162{165)] requires numerical integration which, except
for one-factor models, is unlikely to be computationally feasible.9

Instead, Chen and Scott (1995) and Duan and Simonato (1995) propose a Gaus-
sian QML approach based on the linear Kalman �lter. The transition equation is
obtained from the �rst and second conditional moments of the state variables:

Xk = ck( ) + �k( )Xk�1 + uk; (35)

where

Cov [uk j Xk�1] = Vk(Xk�1;  ) (36)

9In a recent paper, Fr�uhwirth-Schnatter and Geyer (1996) take a Bayesian approach to estimat-

ing the multi-factor CIR model, and coupled with modern Markov Chain Monte Carlo (MCMC)

methods, they obtain optimal �ltering for the state variables and likelihood inference for  . The

MCMC approach is quite complex, though, and the authors do not report any computing times.
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is obtained from (33). Note that there are two di�erences between this transition
equation and the Gaussian counterpart (11). First, uk is not normally distributed
in (35), not even conditionally. Second, in (35) the conditional covariance matrix of
uk is an a�ne function of the lagged state vector, Xk�1, whereas it is constant for a
Gaussian term-structure model.

The linear Kalman �lter recursions are modi�ed in two respects. First, since Vk is
now state dependent, we evaluate Vk at X̂k�1 when computing �kjk�1 in the prediction
step (17). Second, in a non-Gaussian exponential-a�ne model, the state variables, or
at least a subset thereof, are restricted to be non-negative. The linear update step
(18) does not take such restrictions into account, and negative estimates of Xk could
occur. If Vk+1 is evaluated at a negative X̂k, the result may not be positive de�nite.
Chen and Scott (1995) propose a solution to the problem that involves replacing
negative estimates of Xk;j with zero (assuming that the support of the j'th state
variable is restricted).

Besides these modi�cations, we use exactly the same formulae for the Kalman
�lter recursions as in section 3.2. Moreover, we still obtain a sequence of prediction
errors, vk, which enter the QML estimation criterion,

Qn( ) =
1

n

nX
k=1

lk( ) (37)

where

lk( ) = � log jFk( )j � vk( )
0F�1

k ( )vk( ):

Apart from a constant and the scaling by 2=n, Qn( ) is equivalent to the Gaussian
log-likelihood function (22). The QML estimator,  ̂n, is found by maximizing Qn( )
over the parameter space 	.

The asymptotic properties of QML for conditionally heteroskedastic models are
discussed by Bollerslev and Wooldridge (1992). A su�cient condition for consistency
of the QML estimator is given by:

E (vk j Fk�1) = 0

E (vkv
0

k j Fk�1) = Fk;

where Fk is de�ned in (15). However, as Duan and Simonato (1995) point out, these
conditions are not satis�ed for the state space model represented by (34){(36). If we
condition on Xk�1, the mean and covariance matrix of Rk are both correctly speci�ed,
but the information set Fk�1 only contains X̂k�1, not the unobserved Xk�1. Of course,
QML would still be consistent if

X̂k = E[Xk j Fk]; (38)

but (38) is a property of the exact �lter, and, in general, it does not hold when
applying the linear Kalman �lter to a non-Gaussian state space model.10 There is

10Censoring negative estimates of the state variables at zero is unlikely to improve the properties

of the QML estimator, but some form of correction is, of course, necessary to ensure a positive

de�nite covariance matrix. We suspect that the censoring leads to an upward bias in the estimated

state variables which adversely a�ects the parameter estimates.
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a subtle irony in the last argument. Since an exact �ltering algorithm is deemed
computationally infeasible, we rely instead on the linear Kalman �lter and Gaussian
QML | only to �nd that the QML estimator is inconsistent unless X̂k is obtained
from the exact �lter.

Admittedly, the arguments for abandoning the Kalman �lter (and QML) for non-
Gaussian models are compelling. Besides being inconsistent, the QML estimator is, of
course, ine�cient relative to maximum likelihood. On the other hand, the Bayesian
MCMC approach of Fr�uhwirth-Schnatter and Geyer (1996), as well as the simulation-
based EMM procedure used by Buraschi (1996) and Dai and Singleton (1997), pro-
vide consistent estimators which also attain full asymptotic e�ciency. Alternatively,
if m maturities are known to be observed without measurement error, the exact
likelihood function is easy to compute, see Chen and Scott (1993) and Du�e and
Singleton (1997).

However, these estimation procedures are either computationally involved (EMM,
MCMC), or rely on more restrictive assumptions about the presence of measurement
errors than the Kalman �lter method. Furthermore, with a minor modi�cation of
the state space model (34) and (35), we actually obtain a consistent QML estimator.
Altogether, this suggests that there is still some role for the Kalman �lter method,
the concerns about e�ciency notwithstanding.

4.4 Properties of QML for non-Gaussian state space models

In this section, we consider a non-Gaussian state space model where the combination
of the linear Kalman �lter and QML does provide a consistent estimator. Apart from
being interesting in its own right, this analysis serves two purposes.11 First, it singles
out the particular aspects of the non-Gaussian state space model (34) and (35) which
cause QML to be inconsistent. Second, it motivates the subsequent modi�cations of
the state space model that are necessary to ensure consistency.

The non-Gaussian state space model has the following general form:

yk = d+ ZXk + "k ; "k � D(0; H) (39)

Xk = c + �Xk�1 + uk ; uk � D(0; V ); (40)

where D(0;�) denotes an arbitrary unconditional distribution with zero mean and
covariance matrix �. The two error terms, "k and uk are assumed to be cross-
sectionally and serially uncorrelated,

E("kus) = 0 for all k and s;

E("k"k�j) = 0 for all k, and j > 0;

E(ukuk�j) = 0 for all k, and j > 0:

These restrictions do not rule out higher order dependencies, including conditional
heteroskedasticity.

11Related studies that consider asymptotic properties of QML estimators for non-Gaussian state

space models include Dunsmuir (1979), Watson (1989) and Ruiz (1994). The issue is also discussed

by Hamilton (1994a, 1994b).
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Because the state space model is non-Gaussian, the prediction and update steps of
the linear Kalman �lter no longer compute conditional expectations of the unobserved
state variable, Xk, given the observed data. However, the �lter is still optimal among
all linear estimators of Xk, a property referred to as MMSLE (minimum mean square
linear estimator), see Duncan and Horn (1972) and Harvey (1993). For the update
step, this means that X̂k, given by equation (18), is the linear projection of Xk on
Fk, that is Rk; : : : ; R1. Moreover, X̂k is an unconditionally unbiased estimator of the
unobserved Xk,

E
h
X̂k �Xk

i
= 0;

and �k [equation (19)] is the unconditional covariance matrix (MSE matrix) of the
estimation error X̂k � Xk. The same basic properties apply to the prediction step
where X̂kjk�1 is the linear projection of Xk on Fk�1, and so forth.

Consequently, since Rk is linear in Xk,

R̂k = d+ ZX̂kjk�1 (41)

can be interpreted as the linear projection of Rk on Fk�1. The prediction error,
de�ned as vk = Rk � R̂k, satis�es the following properties:

E(vk) = 0; (42)

E(vkv
0

k) = Z�kjk�1Z
0 +H = Fk; (43)

E(vkRk�j) = 0; for all j > 0: (44)

The last result, (44), follows from R̂k being the optimal linear estimator of Rk, given
the variables in Fk�1.

Having described the properties of the �ltering algorithm (for a given value of the
parameter vector  ), we turn to the properties of the QML estimator,  ̂n, which is
obtained by maximizing (37). The following analysis is based on the general QML
framework developed by White (1982, 1994).

4.4.1 Consistency of the QML estimator

We assume that the uniform law of large numbers (ULLN) holds for Qn( ), which
means that

Qn( )! �Q( ) a.s. and uniformly in 	; (45)

where

�Q( ) = lim
n!1

E0 [Qn( )] = lim
n!1

1

n

nX
k=1

E0 [lk( )] : (46)

Here, E0[ � ] denotes the expectation under the probability measure corresponding to
the true DGP. Let � denote the (global) maximizer of the non-stochastic function
�Q( ). As a direct consequence of (45), it follows that

 ̂n ! � a.s.;
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see White (1994) for a proof. Thus, in order to prove consistency of our QML esti-
mator, we must demonstrate that � =  0, the true value of the parameter vector, or,
in other words, that  0 maximizes �Q( ).

The k'th term in (46) is given by:

E0 [lk( )] = �E0

n
log jFk( )j+ vk( )

0F�1

k ( )vk( )
o

= � log jFk( )j � Tr
n
F�1

k ( )E0[vk( )vk( )
0]
o

(47)

The simpli�cation in second line of (47) follows because Fk( ) is non-stochastic as
it does not depend on the data. This is easily veri�ed by inspection of the linear
Kalman �lter recursions. Next, we rewrite vk( ) = Rk � R̂k( ) as

vk( ) = Rk � R̂ 0

k +
h
R̂ 0

k � R̂k( )
i
= v0k +

h
R̂ 0

k � R̂k( )
i
; (48)

where the superscript 0 refers to the \true" projection of Rk on Fk�1, corresponding,
hypothetically, to running the linear Kalman �lter with  =  0. The term in brackets
in (48) is given by the di�erence of two linear predictors of Rk which means that it
is a linear function of Rk�1; : : : ; R1. By the property (44), v0k is uncorrelated with
Rk�j for all j > 0. Hence, when squaring the right hand side of (48), and taking
expectations, the cross product vanishes,

E0[vk( )vk( )
0] = E0

h
v0kv

00

k

i
+ E0

�h
R̂ 0

k � R̂k( )
i h
R̂ 0

k � R̂k( )
i0�

� F 0

k +Gk( ): (49)

Substituting (49) into (47) yields

E0 [lk( )] = � log jFk( )j � Tr
h
F�1

k ( )F 0

k

i
� Tr

h
F�1

k ( )Gk( )
i

(50)

The third term in (50) can also be written as

�Tr
h
F�1

k ( )Gk( )
i
= �E0

�h
R̂ 0

k � R̂k( )
i0
F�1

k ( )
h
R̂ 0

k � R̂k( )
i�
;

which | for any positive de�nite matrix Fk( ) | is maximized when

R̂k( ) = R̂ 0

k : (51)

De�ne the remaining part of (50) as

g (Fk( )) = � log jFk( )j � Tr
h
F�1

k ( )F 0

k

i
:

It follows from a standard matrix inequality, see Johnson and Wichern (1992, p. 146),
that the maximizer of the function g(Fk( )) is given by

Fk( ) = F 0

k : (52)

Conditions (51) and (52) can only hold for all k when  =  0, and this proves that
the QML estimator is consistent, that is  ̂n !  0 a.s.
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4.4.2 Asymptotic normality of the QML estimator

Under certain regularity conditions, the QML estimator,  ̂n, is asymptotically nor-
mally distributed,

p
n
�
 ̂n �  0

�
) N

�
0; A�1

0
B0A

�1

0

�
;

where

A0 = lim
n!1

E0

"
� 1

n

nX
k=1

@2lk( 0)

@ @ 0

#
(53)

B0 = lim
n!1

Cov0

 
1p
n

nX
k=1

@lk( 0)

@ 

!
: (54)

Since (53) and (54) are unknown, we need to �nd consistent estimators of these
matrices in order to compute standard errors. As shown in, e.g., Harvey (1989), the
�rst and second order derivatives of lk( ) are given by

@lk( )

@ i

= �Tr
("
F�1

k

@Fk

@ i

# h
I � F�1

k vkv
0

k

i)
� 2

@v0k
@ i

F�1

k vk; (55)

and

@2lk( )

@ i j
= Tr

("
@

@ j

 
F�1

k

@Fk

@ i

!# h
I � F�1

k vkv
0

k

i)
�

Tr

(
F�1

k

@Fk

@ i
F�1

k

@Fk

@ j
F�1

k vkv
0

k

)
+ Tr

(
F�1

k

@Fk

@ i
F�1

k

"
@vk

@ j
v0k + vk

@v0k
@ j

#)

�2 @2vk

@ i@ j
F�1

k vk � 2
@v0k
@ i

@F�1

k

@ j
vk � 2

@vk

@ i
F�1

k

@vk

@ j
; (56)

respectively. The �rst and second order derivatives of vk are linear functions of Rk�j,
for j > 0, and thus, by (44), uncorrelated with vk. Since Fk is non-stochastic, this
implies that the expectation of the third, fourth and �fth terms in (56) are zero.
Moreover, since Fk = E0(vkv

0
k), taking expectations over (56) yields

E0

"
@2lk( )

@ i@ j

#
= �Tr

"
F�1

k

@Fk

@ i

F�1

k

@Fk

@ j

#
� 2E0

"
@vk

@ i
F�1

k

@vk

@ j

#
:

Hence, a consistent estimator of A0 is given by:

An( ̂n) =
1

n

nX
k=1

(
Tr

"
F�1

k

@Fk

@ i
F�1

k

@Fk

@ j

#
+ 2

@vk

@ i
F�1

k

@vk

@ j

)
(57)

Note that (57) only requires �rst order derivatives of vk and Fk which can be computed
analytically by setting up special derivative recursions alongside the regular Kalman
�lter recursions, see Harvey (1989) for details.

If vk is a martingale di�erence sequence with respect to Fk�1, the covariance
matrix B0 simpli�es to the well-known OPG (outer product of the gradient) formula.
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However, this result is unlikely to hold in the present context. In general, we can only
assume that vk is serially uncorrelated, and this is not su�cient to ensure that the
score, sk = @lk=@ , in (55) is serially uncorrelated.12 Of course, we can still estimate
B0, for example by using the Newey-West (1987) estimator,

Bn( ̂n) =
1

n

8<
:

nX
k=1

sks
0

k +
LX

h=1

nX
k=h+1

 
1� h

L+ 1

!�
sks

0

k�h + sk�hs
0

k

�9=
; ;

or another covariance matrix estimator which is robust to autocorrelation, see An-
drews (1991), Andrews and Monahan (1992), Gallant and White (1988), and Newey
and West (1994).

4.5 QML estimation of exponential-a�ne models: Part II

By comparing the discussion in section 4.3 and 4.4, it becomes apparent that con-
sistency follows under much weaker conditions in the latter section. Speci�cally, in
section 4.3 the �rst and second conditional moments of Rk must be correctly speci�ed,
whereas consistency in section 4.4 only requires that the linear projection is correctly
speci�ed (loosely speaking). As further argued in section 4.3, the �rst condition is
impossible to satisfy unless the �lter is optimal, and this more or less rules out QML
applications.

Thus, it is important to realize that the basic problem with the QML estimator
in section 4.3 is not related to the non-Gaussian distribution for uk in the transition
equation (35), but the fact that the covariance matrix Vk in (36) depends on the lagged
state vector, Xk�1. Of course, this dependence is a direct consequence of modeling the
�rst and second conditional moments ofXk, instead of the full conditional distribution
(which would make the �ltering problem non-linear). However, for the non-Gaussian
state space model (39) and (40), we only require that uk is serially uncorrelated, not
a martingale di�erence process, and that Vk is the unconditional covariance matrix
of uk which, by de�nition, is independent of Xk�1.

This leads us to propose two modi�cation of the QML estimator, or rather the
implementation of the linear Kalman �lter, which are su�cient to ensure consistency
for all exponential-a�ne models. First, the transition equation is modi�ed such that
Vk is the unconditional covariance matrix of uk. Since the conditional mean of uk
(given Xk�1) is zero, the unconditional covariance matrix of uk is given by:

Vk = E
n
Cov[Xtk j Xtk�1

]
o

=
Z tk

tk�1

e�K(tk � v)CE
h
�2(Xv)

i
C 0e�K

0(tk � v) dv; (58)

where

E
h
�2(Xv)

i
ii
= �i + � 0iE [Xv] = �i + � 0i�

12If further restrictions are imposed on the error terms, "k and uk, in the state space model (39)

and (40), the OPG formula may still obtain, see Dunsmuir (1979), Watson (1989) and Ruiz (1994).
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and o�-diagonal elements are zero. Note that the expression for Vk in (58) is com-
pletely analogous to the Gaussian transition equation (11).

Second, we do not impose any non-negativity restrictions on the state variables
as this would invalidate the MMSLE property of the linear Kalman �lter which is
instrumental in proving consistency of the QML estimator. Since Vk no longer depends
on Xk�1, ignoring these restrictions does not lead to any problems with non-positive
de�nite covariance matrices. Essentially, the joint e�ect of these modi�cations is to
treat the term-structure models as a \Gaussian" model, albeit with a measurement
equation that is derived from the general exponential-a�ne ODE system (26){(27).

In summary, the modi�ed QML estimator achieves consistency by ignoring certain
aspects of the term-structure dynamics, notably the conditional heteroskedasticity
properties. We emphasize, therefore, that the procedure is not a panacea for all
our problems with QML and exponential-a�ne models. On the contrary, we should
expect that the cost of eliminating the asymptotic bias (more precisely, ensuring
consistency) is further loss of e�ciency. With a �nite sample, the trade-o� between
bias and e�ciency might easily be in favor of the unmodi�ed QML estimator from
section 4.3. A complete investigation of this issue is outside the scope of the present
paper, but in the next section we perform a small-scale Monte Carlo study where the
two QML estimators are compared for a particular exponential-a�ne model.

4.6 Finite sample properties of the two QML estimators

For reasons of space, we only consider the following two-factor model:

drt = �1(�t � rt)dt+ �1
p
rtdW1t (59)

d�t = �2(� � �t)dt+ �2
p
�tdW2t; (60)

where W1t and W2t are independent Brownian motions. The market prices of risk are
speci�ed as

�1(�) = (�1=�1)
p
rt

�2(�) = (�2=�2)
p
�t:

In this model, the short rate reverts towards a stochastic mean, �t, which is
often called a central-tendency factor. The speci�cation (59){(60) is inspired by
similar models put forth in Jacobs and Jones (1986), Beaglehole and Tenney (1991),
Jegadeesh and Pennacchi (1996) and Balduzzi et al. (1996).

It is readily veri�ed that the model is exponential-a�ne, and the trivariate ODE
system, de�ning A(�), B1(�) and B2(�), is given by:

B0

1
(�) = �(�1 + �1)B1(�) +

1

2
�2
1
B2

1
(�)� 1

B0

2
(�) = �(�2 + �2)B2(�) + �1B1(�) +

1

2
�2
2
B2

2
(�)

A0(�) = �2�B2(�)
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By adapting the proof in Chen (1996, appendix B), a closed-form solution for this
ODE system can be determined, but the formulae involve in�nite-order series expan-
sions of complicated functions. Therefore, we solve the ODE numerically, using the
fourth-order Runge Kutta method.

Besides the speci�cation of the term-structure model, the setup of the Monte Carlo
study can be described as follows:

� The simulated data consist of 1000 time-series observations, at the weekly fre-
quency, thus spanning about 20 years.

� On each date (k = 1; : : : ; 1000) we observe 10 di�erent zero-coupon yields with
maturities of 1 and 3 months, 1, 2, 3, 5, 7, 10, 15 and 30 years.

� The individual measurement errors, "ik (i = 1; : : : ; 10, k = 1; : : : ; 1000), are
independently, normally distributed with a common standard deviation, �", of
20 basis points.

� To simulate the state variables, (rtk ; �tk), we use the Euler discretization of (59)
and (60) with 50 subdivisions per week. See Kloeden and Platen (1992) for
details of the Euler discretization.

� We perform 1000 replications, and apply both QML estimators (cf. sections 4.3
and 4.5) to the simulated data.

The results of the Monte Carlo study are displayed in Table 1. Overall, we get
quite similar results for the two QML estimators, but there are some di�erences.
The standard errors for the modi�ed QML estimator (QML II) are uniformly greater
than for QML I (section 4.3). Since the former estimator ignores the information
about conditional heteroskedasticity in order to ensure consistency, this result is in
accordance with our expectations. However, it is somewhat surprising that the �-
nite sample biases are actually greater for QML II. The di�erences are small, but
nonetheless signi�cant in a paired t-test.

In summary, these results suggest that the asymptotic bias of QML I is quite
small.13 Moreover, even in quite large samples (20 years of weekly data, with 10
points on the yield curve), QML I dominates QML II both in terms of e�ciency and
bias. It is, of course, unclear whether this result carries over to other models, or
sample sizes for that matter. In particular, note that the non-negativity restrictions
on rt and �t are unlikely to be binding for the present model. On the other hand, we
should expect these restrictions to be binding at some observations for a multi-factor
CIR model where the short rate is given by the sum of m non-negative processes.
This issue, however, is left for future research.

13This is consistent with the Monte Carlo evidence reported in Duan and Simonato (1995), and

Ball and Torous (1996) who investigate the properties of QML (QML I) for the one-factor CIR

model.
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5 An empirical application

The data for the empirical analysis are collected from the US swap market. The swap
rates are converted to zero-coupon yields using the so-called \bootstrap" method with
linear interpolation, see Dattatreya and Fabozzi (1995) for details of the computa-
tions.14 Although the original data set contains daily data, our analysis is limited
to the weekly frequency (Wednesdays) in order to avoid problems associated with
missing data points, discreteness of swap-rate changes, and other microstructure is-
sues, such as day-of-the-week e�ects and bid-ask bounces. This leaves a sample of
332 weekly observations, spanning 1/3/90 to 5/8/96. The data contain eight di�erent
maturities: 3 months, as well as 1{5, 7 and 10 years.

We estimate two term-structure models. The �rst model is the Gaussian \double
decay" model suggested by Beaglehole and Tenney (1991),

drt = �1(�t � rt) dt+ �1dW1t

d�t = �2(� � �t) dt+ �2dW2t;

where the Brownian motions are correlated, with correlation coe�cient �, and the
market prices of risk are constant, �1 and �2. The second model, which is given by
equations (59) and (60), is similar to the \double decay" speci�cation. Since the
volatilities depend on rt and �t, respectively, negative interest rates are ruled out,
contrary to the \double decay" model. Furthermore, the short-rate dynamics of the
second model are conditionally heteroskedastic via the level e�ect. On the other
hand, the non-Gaussian central-tendency model restricts the Brownian motions W1t

and W2t to be independent.
For both models, the covariance matrix of the measurement errors is parameter-

ized with a single parameter �" as in the Monte Carlo study, i.e. Hk = �2"IN . The
non-Gaussian model, (59){(60), is estimated using the QML estimator described in
section 4.3 (QML I). We refrain from using the modi�ed QML estimator, proposed
in section 4.5, because of its rather disappointing performance in the Monte Carlo
study.15

The estimation results can be found in Table 2. In general, the performance of
the two models appears to be quite similar. First, the standard deviations of the
measurement errors are 13 basis points in either case which clearly suggests that the
two models provide the same level of �t to the data. Second, the shape of the yield
curve is largely determined by the mean reversion coe�cients under the risk-neutral
measure. For the non-Gaussian model, the risk-neutral mean reversion coe�cients
are given by �i + �i, or 0.3222 and 0.1255, and these numbers are very close to
the corresponding estimates of �1 and �2 in the \double decay" model. Third, the
asymptotic levels of the yield curves, limT!1Ri(t; T ), di�er by less than 4 basis
points (7.56% vs. 7.60%), despite the fact that the maximum maturity used in the
estimation is 10 years. Finally, in Figure 1 we show the theoretical yield curve implied

14I am grateful to Henrik Dahl and Alfred Berg Bank for supplying the US zero-coupon yields.
15The estimates obtained from QML II (the modi�ed QML estimator) are very similar to those

reported in Table 2, though.
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by both models on the last day of the sample, 5/8/96. As can be seen from the �gure,
the two yield curves are virtually indistinguishable.16

6 Conclusion

In this paper we conduct a detailed investigation of the properties of QML for a
general, non-Gaussian state space model, and we show that consistency basically
follows under the same conditions which ensure that the Kalman �lter is linearly
optimal. This analysis, however, does not subsume state space model where the sys-
tem matrices depend on the state vector. Consequently, if we estimate non-Gaussian
term-structure models by matching the �rst and second conditional moments of the
state variables in the transition equation, the resulting QML estimator is inconsistent.
We propose a modi�ed QML estimator which only uses �rst order properties of the
state variable dynamics, thereby ignoring conditional heteroskedasticity properties.
While this modi�cation achieves consistency, the preliminary Monte Carlo evidence
reported here suggests that the �nite sample properties of the QML estimator may
not improve.

16While the theoretical yield curve of Gaussian and non-Gaussian models may be very similar for

realistic parameter values, prices of certain interest-rate derivative securities could still di�er by a

substantial amount, see Rogers (1996) for an illuminating discussion.
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Appendix

In this appendix we provide a general method for computing analytical derivatives
of the functions A(�) and B(�) which is applicable when the associated ODE system
cannot be solved in closed form.

As shown in section 4.1, the (m + 1){dimensional ODE system is given by:

dB(�)

d�
=

1

2

mX
i=1

[C 0B(�)]
2

i �i �K0B(�)�
mX
i=1

�i [C
0B(�)]i �i � w (61)

dA(�)

d�
=

1

2

mX
i=1

[C 0B(�)]
2

i �i +B(�)0K��
mX
i=1

�i [C
0B(�)]i �i; (62)

with boundary conditions B(0) = 0 and A(0) = 0. The solution, B(�) and A(�),
depends on  through the dependence of K, �, C, �, �, � and w on the parameter
vector  . To keep the notation manageable, this dependence is implicitly understood
in the following.

By construction, the ODE system (61) and (62) holds for all values of  . Hence,
we may di�erentiate with respect to  j on both sides of the equations, yielding

@2B(�)

@ j@�
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(63)

and

@2A(�)

@ j@�
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Since B(0) = 0 and A(0) = 0 hold for all  , the boundary conditions in (63) and (64)
are given as

@B(0)

@ j

=
@A(0)

@ j
= 0:

By combining (63){(64) with (61){(62), we obtain a 2(m + 1){dimensional ODE
system which jointly de�nes B(�) and A(�), as well as @B(�)=@ j and @A(�)=@ j .
This system must be solved for each j, for example using the fourth-order Runge-
Kutta method.
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Alternatively, we may perturb the j'th element of  by a small number, say
10�6, resolve the ODE system (61){(62), and compute the derivatives of B(�) and
A(�) by �nite di�erences. Obviously, relying on numerical derivatives requires fewer
algebraic manipulations, not to mention less computer programming, but, contrary
to the approach outlined above, we have no direct way of controlling the accuracy of
the resulting derivatives.
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Table 1:

Results of Monte Carlo study
Non-Gaussian Central-Tendency model

QML I QML II

Mean Mean
Parameter True value [Std.Err] [Std.Err]

�" 0.2000 0.1999 0.1999
[0.0016] [0.0016]

�1 1.2000 1.2041 1.2120
[0.1027] [0.1061]

�2 0.2000 0.2033 0.2038
[0.0215] [0.0218]

� 0.0700 0.0700 0.0694
[0.0092] [0.0094]

�1 0.1200 0.1199 0.1208
[0.0033] [0.0047]

�2 0.0300 0.0299 0.0299
[0.0019] [0.0021]

�1 -0.1000 -0.1038 -0.1117
[0.1003] [0.1038]

�2 -0.0500 -0.0529 -0.0536
[0.0212] [0.0216]

Notes: QML I and QML II refer to, respectively, the
QML estimators described in sections 4.3 and 4.5. The
latter is also called the \modi�ed" QML estimator in
the text. In each case, we report the sample mean
and the standard error (in brackets) of the parameter
estimates from 1000 Monte Carlo replications.
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Table 2:

Parameter estimates for central-tendency models
Data: zero-coupon yields from US swap rates
Sample period: 1/1/90 { 5/8/96 (weekly)

Beaglehole-Tenney Central-Tendency
Model (Gaussian) Model (non-Gaussian)

Parameter Estimate Std.Err Estimate Std.Err

�" 0.1279 (0.0046) 0.1284 (0.0047)

�1 0.3354 (0.0316) 0.5686 (0.0760)
�2 0.1286 (0.0162) 0.0966 (0.0124)
� 0.0649 (0.0173) 0.0627 (0.0111)

�1 0.0083 (0.0006) 0.0397 (0.0025)
�2 0.0174 (0.0014) 0.0475 (0.0045)
� 0.4152 (0.0843) | |

�1 -1.6370 (0.3225) -0.2464 (0.0731)
�2 0.1428 (0.1073) 0.0289 (0.0137)
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Figure 1
Theoretical Yield Curves (May 8, 1996)
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