
Non-Linear Kalman Filtering Techniques

for Term-Structure Models�

Jesper Lundy

Department of Finance

The Aarhus School of Business

Fuglesangs Alle 4

DK-8210 Aarhus V

Denmark

Phone: +45 8948-6362

Fax: +45 8615-1943

E-mail: jel@hha.dk

First draft: June 1997

�The most recent version of this paper is available at: http://www.hha.dk/~jel
yI thank Esben H�g for helpful comments.



Non-Linear Kalman Filtering Techniques

for Term-Structure Models

Abstract

The state space form is a useful framework for estimating Markovian term-structure
models with unobserved state variables. In this paper, we consider an econometric
method which accommodates non-linearity in the measurement equation, for example
when estimating exponential-a�ne models using prices of coupon bonds. The �ltering
algorithm is known as the iterative, extended Kalman �lter (IEKF), and the model
parameters are estimated by quasi maximum likelihood (QML), based on predictions
errors obtained from the IEKF recursions. While, in general, the QML estimator
is inconsistent, a Monte Carlo study demonstrates that the biases are very small,
and economically insigni�cant, in sample con�gurations that are representative of
real-world data.

The main contribution of the paper is a detailed account of an e�cient computer
implementation of the QML-IEKF technique. In this process, we calculate general
expressions for the analytical derivatives of the log-likelihood function and the IEKF
recursions, including the update step which is only de�ned implicitly as the solution
to a non-linear GLS problem.



1 Introduction

A wide range of asset pricing models are based on the premise that all information
about the economy is contained in a �nite-dimensional vector of state variables whose
dynamics are governed by a Markovian law of motion. Using arguments based on
absence of arbitrage, or, alternatively, general equilibrium, asset prices are derived
endogenously as functions of the state variables. The exact functional relationship
depends on the stochastic process for the state variables and the associated risk
premia, as well as the payo� characteristics of the asset, e.g. the time to maturity
of a zero-coupon bond. Vasicek (1977) and Cox, Ingersoll and Ross (CIR) (1985b)
introduced this framework in the term-structure literature, where the basic idea is a
Markovian stochastic process for the instantaneous interest rate (short rate).1 The
latter feature forms a contrast to the Heath, Jarrow and Morton (1992) framework,
where the short rate is only Markovian in certain special cases. See, e.g., Ritchken
and Sankarasubramanian (1995) for further discussion of this issue.

The present paper deals with econometric techniques for Markovian term-structure
models, like the CIR model. In most cases, the data set, containing either prices
of coupon bonds, swap rates, or, perhaps, zero-coupon yields, has a \panel data"
structure with a time dimension and a cross-sectional (maturity) dimension.2 By
construction, Markovian term-structure models impose joint restrictions on the dy-
namics and shape of the yield curve. Hence, for e�ciency reasons the full data set
should be exploited when estimating the unknown model parameters. Moreover, most
Markovian term-structure models contain unobserved state variables, such as stochas-
tic mean and volatility factors. These features make the state space setup a natural
framework for estimation purposes.3 If the data consist of zero-coupon yields, and
the term-structure model under investigation belongs to the exponential-a�ne class,
the model parameters can be estimated using the linear Kalman �lter, see inter alia
Pennacchi (1991), Jegadeesh and Pennacchi (1996), Chen and Scott (1995), Duan
and Simonato (1995), and Lund (1997a).

In several practical applications, there is a non-linear relationship between the ob-
served data and the unobserved state variables. The main examples involve prices of
coupon bonds, and non-linear term-structure models, for example the SAINTS model
proposed by Constantinides (1992). Estimating such models requires non-linear �l-
tering, and since exact (optimal) �ltering techniques tend to be computationally cum-
bersome, if not outright infeasible, due to a \curse of dimensionality" problem, we
are often forced to use approximate methods. However, little is known about the sta-
tistical properties of these methods, whether pertaining to �ltering of the unobserved
state variables, or estimating the (constant) parameters of the model.

1General asset pricing models include Merton (1973), Breeden (1979) and CIR (1985a) in the
continuous-time setting, and Lucas (1978) in the discrete-time setting.

2Note that, in practice, zero-coupon yields are not directly available (in the sense of being traded
in the market), but they can be estimated from prices of coupon bonds or swap rates.

3Another possibility is the MLE \inversion" approach used by, e.g., Chen and Scott (1993) and
Du�e and Singleton (1997), where the m latent variables are expressed as function of yields (or
bond prices) for m maturities.
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In this paper we consider one of the approximate �ltering techniques, the iterative
extended Kalman �lter (IEKF) and provide two new contributions to the literature.
First, we develop a computationally e�cient implementation of the IEKF method,
and as a key element of this part we calculate analytical derivatives of the (quasi) log-
likelihood function. Second, in a Monte Carlo study, we investigate the �nite sample
properties of the quasi maximum likelihood (QML) estimator for two term-structure
models.

The outline of the paper is as follows: in section 2 we introduce the state space
form (model), and the associated statistical techniques, while section 3 describes the
main examples of non-linear state space models in the term-structure setting. The
main focus of the paper, the QML-IEKF method, is presented in section 4, along
with a brief discussion of the asymptotic properties of the QML estimator of the
model parameters. Sections 5 and 6 contain, respectively, a detailed discussion of the
computational aspects of the QML-IEKF method, and the results from the Monte
Carlo study. Finally, section 7 o�ers some concluding remarks.

2 A general framework for the state space form

The data consist of observations sampled at times t1; t2; : : : ; tn that are not neces-
sarily equally spaced. The observations at time tk are collected in an Nk � 1 vector,
yk, where the dimension Nk may depend on k. The data generating process (DGP)
for yk is speci�ed in two steps. First, the measurement equation is given by:

yk = Z(Xk; tk;  ) + "k; (1)

where E("k) = 0, and Xk is a m� 1 vector of unobserved state variables. In general,
we interpret "k as a measurement error term, so the function Z(Xk; tk;  ) is the
\theoretical" value of yk for a given state vector, Xk. For a term-structure model,
Z(�) is obtained from the bond-pricing equation, cf. the discussion in section 3.

Second, the dynamics of the unobserved state vector, Xk, are represented by the
Markovian transition density,

p(Xk jXk�1;  ): (2)

With a further assumption about the distribution of the measurement errors, for ex-
ample "k � N(0; Hk( )) and independent over time, equations (1) and (2) completely
specify the DGP for yk.

2.1 Exact non-linear �ltering

The econometric analysis of this model (DGP) can be divided into two separate, yet
related, problems:

� Estimate the unobserved state variables, Xk, for k = 1; 2; : : : ; n. This is gener-
ally referred to as the �ltering part.
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� Estimate the model parameters in the vector  , preferably by maximum likeli-
hood estimation (MLE).

The exact �ltering recursions, described below, are the optimal solutions to these
problems. To facilitate the discussion, let Yk represent the information available at
time tk,

Yk = (y1; y2; : : : ; yk):

We begin by deriving the prediction density which is the distribution of Xk given Yk:

p(Xk jYk�1) =
Z
p(Xk; Xk�1 jYk�1)dXk�1

=
Z
p(Xk jXk�1) p(Xk�1 jYk�1)dXk�1; (3)

where (by de�nition) the integration is over the support of Xk�1. If the dimension of
X is greater than one, the integral is implicitly understood to be a multi-dimensional
integral. The optimal predictor of Xk, in a mean-squared-error (MSE) sense, is the
conditional mean of Xk given Yk�1,

E[Xk jYk�1] =
Z
Xkp(Xk jYk�1)dXk:

In the update step we use the additional information contained in yk to obtain a better
estimator of Xk. Since the state space model is non-linear, we must derive the full
conditional distribution of Xk given Yk,

p(Xk jYk) =
p(Xk; yk jYk�1)
p(yk jYk�1)

=
p(yk jXk; Yk�1) p(Xk jYk�1)

p(yk jYk�1)
(4)

=
p(yk jXk) p(Xk jYk�1)

p(yk jYk�1)
;

where

p(yk jYk�1) =
Z
p(yk; Xk jYk�1)dXk

=
Z
p(yk jXk) p(Xk jYk�1)dXk (5)

In going from the second to the third line of (4), note that once Xk is known, there
is no further information about the distribution of yk in the data history Yk�1. This
follows from the Markov property of the state space model (1) and (2). The same
property is used in (5).

As in the prediction step, the optimal estimator of Xk is the conditional expecta-
tion, now given the larger information set Yk,

E[Xk jYk] =
Z
Xkp(Xk jYk)dXk:
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Furthermore, when passing through the non-linear �ltering recursions (3) and (4),
for k = 1; 2; : : : ; n, we compute the likelihood function of Yn as a by-product. To see
this, note that by the so-called prediction error decomposition,

logL(y1; : : : ; yn;  ) =
nX

k=1

log p(yk jYk�1;  );

which is obtained directly from (5).
Unfortunately, except for the linear state space model discussed below, and a few

other special cases, no closed-form solutions are known for the integrals in (3) and (5).
Kitagawa (1987) suggests using numerical integration to compute the respective den-
sities, but numerical integration is probably infeasible (in practice) if the dimension of
X is greater than one (multi-factor models). Therefore, the main focus of the present
paper is on approximate �ltering techniques, especially the IEKF method.

2.2 Two special cases

2.2.1 The linear Gaussian state space model

The linear Gaussian state space model takes the following form:

yk = dk( ) + Zk( )Xk + "k; "k � N(0; Hk( )) (6)

Xk = �k0( ) + �k1( )Xk�1 + uk; uk � N(0; Vk( )) (7)

Compared to the general state space model in the previous section, the measurement
equation is linear in Xk, and the dynamics of the state vector are represented by
a Gaussian VAR(1) process. The two error terms, "k and uk, are assumed to be
mutually independent, and serially uncorrelated. Finally, note that (by linearity) the
system matrices dk( ), Zk( ), Hk( ), �k0( ), �k1( ) and Vk( ) are independent of
the state vector Xk, but they may still vary deterministically over time, e.g. through
unequally spaced observations.

Since all error terms in this state space model are normally distributed, the pre-
diction and update densities, (3) and (4), can be shown to be normal (Gaussian)
densities. Moreover, the conditional likelihood function (5) is also a Gaussian den-
sity. This means that the general �ltering recursions for the conditional densities in
(3) and (4) can be reduced to simpler recursions for the conditional means and covari-
ance matrices, as the �rst and second moments completely characterize the normal
distribution.

First, following, e.g., Harvey (1989), the prediction step can be represented by the
mean recursion,4

X̂kjk�1 = E [Xk jYk�1] = �k0 + �k1X̂k�1

with mean square error (MSE) matrix

�kjk�1 = �k1�k�1�
0

k1 + Vk

4To simplify the notation in the following, we suppress the dependence of the system matrices
on the parameter vector  .
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Second, in the update step the additional information contained in yk is used to obtain
a more precise estimator of Xk, namely

X̂k = E (Xk j Yk) = X̂kjk�1 + �kjk�1Z
0

k
F�1
k
vk; (8)

�k =
�
��1
kjk�1 + Z 0

k
H�1
k
Zk

��1
;

where

vk = yk � E [yk jYk�1] = yk �
�
dk + ZkX̂kjk�1

�
Fk = Cov(vk) = Zk�kjk�1Z

0

k
+Hk:

Finally, the log-likelihood function for the data is obtained directly as a by-product
of the linear Kalman recursions,

logL(y1; y2; : : : ; yn;  ) =
nX

k=1

�Nk

2
log(2�)� 1

2
log jFkj �

1

2
v0
k
F�1
k
vk: (9)

where Nk = dim(vk). To start the Kalman recursions we need initial values of X0

and �0. If the state vector Xk is stationary, we can use the unconditional mean and
covariance matrix of Xk, but another possibility is the di�use prior approach, see
Harvey (1989) for further discussion.

In the term-structure setting, we can use the linear Gaussian framework if

� The term-structure model is Gaussian, such as the one-factor Vasicek (1977)
model, or the Beaglehole-Tenney (1991) \double-decay" model, and

� The data consist of zero-coupon yields which are assumed to be observed with
measurement error, owing to, e.g., non-synchronous trading, rounding of prices,
bid-ask spreads, or simply errors introduced by the particular method used to
estimate the zero-coupon yields.

Gaussian models are estimated by the Kalman �lter method in Pennacchi (1991),
Duan and Simonato (1995) and Lund (1997a).5

5In the general exponential-a�ne model [Du�e and Kan (1996)] we obtain the same measurement
equation as in (6), since the price of a zero-coupon bond is given by

P (t; t+ �) = exp [A(�) +B(�)0Xt] ;

but the transition dynamics are non-Gaussian, e.g. non-central �2 for the CIR model. Chen and
Scott (1995) and Duan and Simonato (1995) suggest a QML approach based on the �rst and second
(conditional) moments of the transition density. The resulting transition equation closely resembles
(7), except that Vk( ) depends linearly on the lagged state vector, Xk�1. However, as pointed
out by Duan and Simonato (1995) this results in the QML estimator being inconsistent. See Lund
(1997a) for further analysis, and a possible solution to this problem within the QML framework. In
any case, the biases of the QML estimator appear to be small.
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2.2.2 Non-linearity in the measurement equation only

In many cases, the non-linearity of the state space model is limited to the measurement
equation:

yk = Zk(Xk;  ) + "k; "k � N(0; Hk( )) (10)

Xk = �k0( ) + �k1( )Xk�1 + uk; uk � N(0; Vk( )) (11)

Although the only di�erence compared to (6) and (7) is the non-linear transformation
of Xk in the measurement equation, the exact �ltering algorithm no longer simpli�es
to recursions for the �rst and second moments of Xk, and we are left with the general
density recursions (3) and (4).

Nonetheless, there are two main reasons for separately discussing the state space
model (10){(11). First, several term-structure models, including the four examples in
the next section, are all special cases of this model. Second, because the non-linearity
is limited to the measurement equation, it is easier to develop good approximate
�ltering techniques. For example, the IEKF method is particularly e�ective in dealing
with this type of non-linearity, as demonstrated by Jazwinski (1970).

Second, Fr�uhwirth-Schnatter (1994) proposes a novel technique which is explicitly
designed to exploit the structure of (10){(11). The basic idea of her approach is
to approximate the update density by a Gaussian density with the same mean and
covariance matrix as the the exact update density (4). Of course, these moments
need to be computed by numerical integration, but the dimension of the integration
problem has been vastly reduced | in the one-factor case to 3n one-dimensional
integrals that need to be computed by quadrature.6 Evidence reported in Torous and
Ball (1995) shows that the method is very e�ective when estimating a discrete-time
log-normal stochastic volatility model.

Unfortunately, the Fr�uhwirth-Schnatter (1994) approach still su�ers from a \curse
of dimensionality" problem since a m-factor model translates into numerical integra-
tion in m dimensions, and even with m = 2 this is rather impractical. Consequently,
we use the IEKF method in the present paper.

3 Term-structure models in state space form

In this section we describe four examples of term-structure models cast in (non-linear)
state space form. The common characteristics are a linear transition equation with
Gaussian innovations, combined with a non-linear measurement equation, like the
state space model (10){(11). The �rst case is described in greatest detail since we
use it in the Monte Carlo study in section 6.

6Another advantage of the Fr�uhwirth-Schnatter (1994) approach is that we can use any (para-
metric) distribution for the measurement errors "k.
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3.1 Estimation of exponential-a�ne term-structure models

using prices of coupon bonds

Exponential-a�ne models are considerably easier to estimate if the data consist of
zero-coupon yields, but such data are rarely available, except perhaps for short-term
maturities. Therefore, most studies use zero-coupon yields that are estimated from
prices of coupon bonds, for example the Fama-Bliss (1987) or McCulloch-Kwon (1993)
data sets. Basically, there are two problems with this approach. First, the synthetic
zero-coupon yield data contain less information than the original bond prices. Second,
the method used to estimate the zero-coupon yields might introduce biases in the
subsequent estimation results. We emphasize that the latter point is a conjecture as
we are not aware of any studies relating to this question.

When applying the state space framework directly to bond prices, we get a non-
linear measurement equation, where the i'th element is given by the expression:

Pi(tk) =
MiX
j=1

cij � exp [A(Tij � tk;  ) +B(Tij � tk;  )
0Xk] + "ik; (12)

where cij is the j'th payment of the i'th bond which is paid out at time Tij.
The dynamics of the state variables (transition density) can be put in the linear

VAR(1) form,

Xk = �k0( ) + �k1( )Xk�1 + uk;

where �k0( ), �k1( ), and the distribution of the innovation uk depend on the speci�c
exponential-a�ne model. As already mentioned, we focus on Gaussian models in
this paper which means that uk � N(0; Vk( )).

7 Langetieg (1980) derives general
expressions for the system matrices in the transition equation.

3.2 Non-linear term-structure models

The vast majority of term-structure models with an analytical solution for bond
prices belongs to the exponential-a�ne class. One of the relatively few exceptions is
the SAINTS (Squared Autoregressive Instrumental Nominal Term Structure) model
proposed by Constantinides (1992). In the SAINTS model, the state variables follow
a Gaussian VAR(1) process, but the yield curve implied by the model is a linear-
quadratic function of the state variables. This means that the measurement equation
will always be non-linear in Xk, even when using zero-coupon yields to estimate the
model.

7The mechanics of the IEKF method does not rely on speci�c distributional assumptions for
either uk or "k, so the main problem with non-Gaussian models is the fact that the covariance
matrix of uk, Vk( ), is an a�ne function the lagged state vector, Xk�1, and that the support of Xk

is restricted. These problems are addressed when presenting the IEKF method in section 4.
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3.3 Models for pricing defaultable bonds

Claessens and Pennacchi (1996) and Cumby and Evans (1995) develop models for
pricing credit risky bonds, in particular Brady bonds. The single state variable is a
country \value index" whose technical role is triggering default when hitting zero. The
authors show that prices of Brady bonds are a rather complicated non-linear function
of this unobserved state variable (the value index). In both papers, QML combined
with a non-linear Kalman �ltering technique (known as the extended Kalman �lter,
or EKF) is used to estimate the model parameters.

3.4 A term-structure model with a monetary union (EMU)

One of the factors currently a�ecting long-term bond prices in Europe is the possible
transition to a monetary union since this would eliminate yield spreads between mem-
ber countries. The issue is quite complicated because of the prevailing uncertainty
about the timing of EMU memberships, and possibly whether EMU will be formed
in the �rst place. Lund (1997b) develops a term-structure model which explicitly
takes into account the possibility of a monetary union. The model can be estimated
using zero-coupon yield spreads to Germany (obtained from the swap market). All
state variables in the EMU model are governed by Gaussian processes, but because
of the EMU feature there is a non-linear relationship between yield spreads and the
underlying state variables. We refer to Lund (1997b; section 3) for further details.

4 The iterative extended Kalman �lter (IEKF)

As pointed out in section 2, exact �ltering for non-linear state space models is gener-
ally considered to be computationally infeasible, except perhaps for one-factor mod-
els.8 Therefore, we turn to approximate �ltering techniques, although this move
entails three major problems.

First, there is an e�ciency loss for the estimator of the unobserved state variables
(the �ltering problem), and the �ltered estimates may be biased as well. Second,
the unknown parameters,  , of the state space model cannot be estimated by (ex-
act) MLE, as this is inherently tied to the optimal (exact) �ltering method. As a
by-product of most �ltering algorithms we construct a sequence of approximate pre-
diction errors which can be used to form a quasi likelihood function of the Gaussian

8Statements along this line are quite prevalent in the econometrics literature, but they are based
on the premise that exact �ltering has to be done through numerical integration (quadrature).
Recent advances in, especially, statistical computing and Markov Chain Monte Carlo (MCMC)
methods have demonstrated that taking a Bayesian approach to analyzing non-linear state space
models often reduces the computational burden considerably, without incurring the e�ciency losses
(and other problems) inherently associated with approximate �ltering techniques, such as the IEKF
method. The main (�nance) applications of the MCMC approach are concerned with stochastic
volatility models, see Jacquier et al. (1994) and Kim et al. (1996), but recently Fr�uhwirth-Schnatter
and Geyer (1996) have used the MCMC method to estimate multi-factor CIR models in the \panel
data" framework. However, the Bayesian MCMC approach is outside the scope of the present paper.
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form (9). However, as we discuss in section 4.2 below, it is generally not possible to
prove that the resulting QML estimator is consistent.

Third, and �nally, there are several approximate �ltering techniques to choose
from, and a priori it is di�cult, if not impossible, to know which one is \optimal" for
a given problem.9 Arguably, this is a highly relevant concern for the IEKF method,
but formally addressing the problem is outside the scope of the present paper.

4.1 A description of the IEKF algorithm

The state space model has the following form:

yk = Zk(Xk;  ) + "k; "k � D(0; Hk( )) (13)

Xk = �k0( ) + �k1( )Xk�1 + uk; uk � D(0; Vk( )); (14)

where D(0; Q) refers to an arbitrary zero-mean distribution with covariance matrix
Q. Since the IEKF method is based on linear projections, rather than conditional
expectations, we do not need speci�c distributional assumptions for "k and uk. For
the present, though, we do assume that they are conditionally homoskedastic.

The �ltering recursions of the IEKF method can be divided into a prediction and
update step. Both steps provide an estimator of the unobserved state vector and an
associated MSE matrix. They are denoted by, respectively, X̂kjk�1 and �kjk�1 for the

prediction step, and X̂k and �k for the update step. Since the transition equation is
linear, we use the same prediction step as in section 2.2.1,

X̂kjk�1 = �k0 + �k1X̂k�1;

with MSE matrix

�kjk�1 = �k1�k�1�
0

k1 + Vk:

The update step is less straightforward because of the non-linear measurement
equation in (13), and the di�erent approximate �ltering techniques can primarily be
distinguished according to their implementation of the update step. To understand
the intuition behind the update step of the IEKF method (below), it is useful to
consider an alternative interpretation of the update step for the linear Gaussian state
space model. Speci�cally, Duncan and Horn (1972) show that calculating (8) is
equivalent to solving the generalized least squares problem:

FL(X) =
�
X � X̂kjk�1

�0
��1
kjk�1

�
X � X̂kjk�1

�
+

(yk � dk � ZkX)0H�1
k

(yk � dk � ZkX) : (15)

In other words, the update step (8) can be interpreted as a linear projection, whereas
in section 2.2.1 it is stated as the conditional expectation of Xk, given Yk.

9See Tanizaki (1996) for an extensive account of non-linear �ltering techniques for economic
models.
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With (15) as the main motivation, the update step for the IEKF method is rep-
resented by the non-linear GLS problem:

X̂k = argmin
X

FNL(X);

where

FNL(X) =
�
X � X̂kjk�1

�0
��1
kjk�1

�
X � X̂kjk�1

�
+

(yk � Zk(X))0H�1
k

(yk � Zk(X)) : (16)

We further de�ne the MSE matrix for X̂k as,

�k =

 
��1
kjk�1 +

@Zk(X̂k)
0

@X
H�1
k

@Zk(X̂k)

@X 0

!�1
; (17)

which may be recognized as the (asymptotic) covariance matrix if X̂k is viewed as a
standard parameter estimator in a non-linear GLS setting.

Since (16) needs to be minimized at each time series observation, and for each
candidate parameter value  , when maximizing the likelihood function, it is extremely
important that we use an e�cient algorithm. In our experience, the Gauss-Newton
algorithm with analytical derivatives is an overall e�cient choice. Its iteration scheme
is given by:

X̂
j+1

k
= X̂

j

k
� �j+1

(
��1
kjk�1

+
@Zk(X̂

j

k
)0

@X
H�1
k

@Zk(X̂
j

k
)

@X 0

)�1
�

(
��1
kjk�1

(X̂j

k
� X̂kjk�1) �

@Zk(X̂
j

k
)0

@X
H�1
k

�
yk � Zk(X̂

j

k
)
�)

; (18)

where �j is a step length, chosen at the j'th iteration to ensure a decrease in the
criterion function FNL(X). As starting value for the Gauss-Newton iterations, we use
the previous estimate from the prediction step, X̂kjk�1.

With the extended Kalman �lter (EKF), see e.g. Harvey (1989), the update step
is obtained by linearizing the measurement and transition equations and applying
the standard (linear) Kalman �lter to the linearized model. For the state space
model (13){(14), the EKF procedure corresponds to just one iteration of (18), starting
from X = X̂kjk�1. Jazwinski (1970) compares the properties of the IEKF and EKF
methods, and concludes that the IEKF method is more e�ective in dealing with non-
linearities in the measurement equation.

What remains to be done is devising a method for estimating the unknown model
parameters,  . As we have already pointed out, MLE is not an option, and the
estimation method for  could be completely separated from the non-linear �lter-
ing algorithm, at least in principle. Note, however, that since the data are often
non-stationary | for example prices of coupon bonds whose stochastic properties
change over time due to maturity shortening | we cannot use methods that rely on
convergence of unconditional moments (such as GMM).
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Instead, we estimate the model parameters by the quasi maximum likelihood
(QML) principle. The quasi log-likelihood function is given by:

logL(y1; : : : ; yn;  ) =
nX

k=1

�Nk

2
log(2�)� 1

2
log jFkj �

1

2
v0
k
F�1
k
vk; (19)

where

vk = yk � Zk(X̂kjk�1) (20)

Fk =
@Zk(X̂kjk�1)

@X 0
�kjk�1

@Zk(X̂kjk�1)
0

@X
+Hk (21)

Using the prediction error (20) and its covariance matrix (21) corresponds to lineariz-
ing the measurement equation (13) around X = X̂kjk�1.

4.2 IEKF with non-Gaussian transition equations

In the following, we make a brief digression and discuss possible generalizations of
the IEKF method to conditionally heteroskedastic transition equations, that is state
space models where Vk( ) depends on the unobserved state vector Xk�1.

Duan and Simonato (1995) show that all exponential-a�ne models can be put in
VAR(1) form, like (14), and that the conditional covariance matrix of the innovation,
uk, is an a�ne function of the (lagged) state vectorXk�1. Furthermore, term-structure
models such as the CIR model also restrict the support of the state variables, typically
to the non-negative part of the real line, and without imposing this restriction there is
no guarantee that the covariance matrix of uk remains positive de�nite. However, the
mechanics of the IEKF update step does not automatically ensure that X̂k satis�es
these restrictions.

There are several modi�cations of the basic IEKF method that would make it
possible to estimate exponential-a�ne models (in addition to Gaussian models):

� The update step can be modi�ed to minimize (16) subject to the requisite non-
negativity conditions. Conceptually, this is probably the best solution. How-
ever, the minimization problem in the update step becomes much more complex
(and time-consuming), and the same caveat applies to calculating analytical
derivatives (cf. section 5) that are often critical to successfully maximizing the
quasi log-likelihood function over  .

� Duan and Simonato (1995) and Chen and Scott (1995) estimate multi-factor
CIR models (with a linear measurement equation as their data consist of zero-
coupon yields), and they propose a simpler solution which involves replacing
negative values by zero.

� Finally, we can simply ignore the non-negativity restrictions, thus avoiding any
new complications in the update step. Of course, we need some modi�cation to
keep Vk, and hence Fk, positive de�nite. One possibility is using the absolute
value of the state variables when calculating Vk. Alternative, Lund (1997a)
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suggests that we use the unconditional covariance matrix of uk. With a lin-
ear measurement equation, the latter suggestion actually ensures that QML is
consistent, see Lund (1997a) for further details.

Analyzing the pros and cons of the di�erent approaches is outside the scope of
the present paper, and so we concentrate on Gaussian term-structure models.

4.3 Asymptotic properties of the IEKF-QML estimator

It is well known that maximum likelihood (ML) estimators are consistent and asymp-
totically normally distributed under quite general conditions. However, the results
do not apply to the IEKF method since the prediction error vk entering (19) does not
have a conditional normal distribution with mean zero and covariance matrix Fk. In
other words, the likelihood function (19) is misspeci�ed.

Fortunately, there is a well-developed statistical theory for misspeci�ed models,
known as quasi maximum likelihood (QML) theory, which can be used in the IEKF
context. We briey review the main QML results below, and refer to White (1982),
Gallant and White (1988) and White (1994) for an in-depth exposition.

The QML estimator for n observations,  ̂n, is obtained by maximizing the quasi
log-likelihood function:

Qn( ) =
1

n

nX
k=1

lk( ) =
1

n

nX
k=1

logLk( ); (22)

where logLk( ) is de�ned in (19). Following Gallant and White (1988; ch. 3), we
de�ne  �

n
as the global maximizer of the non-stochastic function

�Qn( ) =
1

n

nX
k=1

E [lk( )] =
1

n

nX
k=1

Z
lk( ) dGk; (23)

where Gk is the (true) distribution of the k'th contribution to the likelihood function.
This distribution may depend on k, thus allowing for non-stationary data generating
processes (DGPs).

Under certain regularity conditions, see Gallant and White (1988), a version of
the uniform law of large numbers (ULLN) can be used to show that

Qn( )� �Qn( ) ! 0 a.s. (24)

and uniformly in the parameter space 	. As a direct consequence of (24), it follows
that

 ̂n �  �
n
! 0 a.s. (25)

To summarize, (25) establishes that the limiting behavior of the QML estimator
 ̂n is well-de�ned, but apart from that the result is somewhat abstract and of limited
practical use as the non-stochastic sequence f �

n
g is unknown. Moreover, consistency

of the QML estimator (in the normal sense) further requires that  �
n
!  0, where  0
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is the true, but unknown, value of the parameter vector. Bollerslev and Wooldridge
(1992) show that a Gaussian QML estimator is consistent if

E [vk jYk�1] = 0 (26)

E [vkv
0

k
jYk�1] = Fk; (27)

which means that the �rst and second conditional moments of yk are correctly speci-
�ed.10

In the QML-IEKF framework, the prediction errors, vk, correspond to a linearized
model, and we cannot expect (26) and (27) to hold because of the approximation error.
Therefore, we are unable to prove that the QML estimator is consistent. However,
there does not seem to exist a consistent estimation method for the non-linear state
space model (13){(14) which, at the same time, is computationally tractable. For ex-
ample, the extended Kalman �lter (EKF), used in e.g. Claessens and Pennacchi (1996)
and Cumby and Evans (1995), su�ers from exactly the same problems since the only
di�erence between the two methods is the update step. In any case, we should base
our choice of estimation technique on the magnitude of the small sample bias, and
this issue is explored with the Monte Carlo study in section 6.

Gallant and White (1988; ch. 5) also derive the asymptotic distribution of the
QML estimator. There are two main conditions for proving asymptotic normality of
the QML estimator:

� There exists a non-stochastic O(1) (i.e. bounded) sequence of positive de�nite
matrices, fB�

n
g, such that

B��1=2
n

1p
n

nX
k=1

@

@ 
logLk ( 

�

n
) ) N(0; I); (28)

where ) denotes convergence in distribution. Equation (28) says that B�

n
is

the asymptotic covariance matrix of the average (normalized) score.

� There exists a non-stochastic sequence of matrices, fA�
n
( )g, such that

@2Qn( )

@ @ 0
� An( ) ! 0 a.s. and uniformly in 	: (29)

This means that there is a well-de�ned limit (a.s.) for the Hessian of (22). If
the DGP is stationary, we further have that An( 

�

n
)! A( �). The asymptotic

distribution theory below applies to either case, though.

Under conditions (28) and (29), Gallant and White (1988) show that

B��1=2
n

A�
n

p
n
�
 ̂n �  �

n

�
) N(0; I); (30)

10Speci�cally, Bollerslev and Wooldridge (1992) show that  0 is the global minimizer of (23) if
the conditions (26) and (27) hold.
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where A�
n
� An( 

�

n
). The upshot of (30) is that the covariance matrix of the QML

estimator  ̂n can be estimated by the formula:

Cov( ̂n) =
1

n
A�1
n
( ̂n)Bn( ̂n)A

�1
n
( ̂n);

where An( ̂n) is the Hessian of the log likelihood function,

An( ̂n) =
1

n

nX
k=1

@2

@ @ 0
logLk

�
 ̂n
�
;

and Bn is a consistent estimator of the covariance matrix of the average (normalized)
QML score, cf. (28). In general, the score, sk = @ logLk=@ , is serially correlated, so
we cannot estimate B�

n
by the outer product of the gradient (OPG) formula. Instead,

we may use the Newey-West (1987) estimator,

Bn( ̂n) =
1

n

8<
:

nX
k=1

sks
0

k
+

LX
h=1

nX
k=h+1

 
1� h

L+ 1

!�
sks

0

k�h
+ sk�hs

0

k

�9=
; ;

or another autocorrelation and heteroskedasticity consistent covariance matrix esti-
mator. See Andrews (1991), Andrews and Monahan (1992), Gallant and White (1988;
ch. 6), and Newey and West (1994) for further details.

5 Implementation of the QML-IEKF technique

Prior to computing the quasi log-likelihood function (19) for a candidate value of the
parameter vector  , we must solve n non-linear GLS problems as the prediction errors
vk entering (19) depend on the updated state vector, X̂k. Consequently, computing
the likelihood function is a time-consuming exercise. Moreover, the most e�ective
optimization algorithms require at least �rst-order derivatives (the gradient) as input,
and sometimes we also need the Hessian, i.e. second-order derivatives.

If we compute the gradient by �nite di�erences (numerical derivatives), we have
to repeat the n GLS problems each time we perturb the parameter vector. Hence,
with p parameters in the vector  , the workload increases by a factor of p or 2p,
depending on whether we use single-sided or double-sided derivatives. In addition,
the Gauss-Newton iterations for each of the n GLS problems are terminated when
some convergence criteria are satis�ed, for example when the norm of the gradient of
(16) is less then some small value, say 10�7. A small change in the parameter vector
 could change the number of iterations needed for convergence at observation k,
and this would introduce an arti�cial discontinuity in X̂k( ) which carries over to the
quasi log-likelihood function. In situations like this, an optimizer expecting a smooth
criterion function could easily get stuck, as Gill et al. (1981) point out.

If we use analytical derivatives for the gradient, we eliminate the above-mentioned
problems with arti�cial discontinuities, and we only have to perform the n GLS
minimizations when computing the likelihood function (19), and not when computing
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the gradient (at the same value of  ). Both factors should contribute considerably
to speeding up the maximization of the likelihood function.

For the linear Kalman �lter, cf. section 2.2.1, Harvey (1989) provides expressions
for analytical derivatives of the log-likelihood function. Since the IEKF quasi like-
lihood function depends on X̂k, which is the outcome of a non-linear minimization
problem, calculating analytical derivatives seems impossible at �rst, but in the follow-
ing we develop a solution to the problem. To our knowledge, this has not been done
before. As in Harvey (1989) we set up recursions for the analytical derivatives that
run alongside the regular IEKF recursions. Thus, the derivative recursions (below)
have prediction and update steps, as well as a part dealing with the k'th contribution
to the likelihood function (19). Furthermore, we discuss an optimization algorithm
based on either the scoring or the Newton-Raphson algorithm. In the latter case, the
Hessian is computed by numerical di�erentiation of the analytical gradient.

Our new method for calculating analytical derivatives applies to the general non-
linear state space model (13){(14). However, in the remaining part of the paper
we focus on the case where the individual measurement errors in the vector "k are
cross-sectionally independent, and distributed with a common variance, that is

Hk = Cov("k) = �2
"
INk

(31)

In many applications the dimension Nk of the observation vector yk is \large", say in
excess of 15{20, and Nk varies over time. This makes is di�cult to use more elaborate
speci�cations of Hk than (31), especially because we want to keep the dimension of
the parameter space at a manageable level. Moreover, there is a signi�cant computa-
tional advantage associated with (31) as several key expressions simplify. Basically,
the complexity of computing the likelihood function reduces from an O(nN2

k
) to an

O(nNk) operation.

5.1 Derivative recursions for the prediction step

These expressions are completely analogous to the linear Kalman �lter, and so we
simply restate the results from Harvey (1989, p. 143). The derivatives of X̂kjk�1 and
�kjk�1 with respect to  i are given by

@X̂kjk�1

@ i
=
@�k0

@ i
+
@�k1

@ i
X̂k�1 + �k1

@X̂k�1

@ i
; (32)

and

@�kjk�1

@ i
=
@�k1

@ i
�k�1�

0

k1 + �k1

@�k�1

@ i
�0
k1 + �k1�k�1

@�k1

@ i

0

+
@Vk

@ i
; (33)

respectively.
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5.2 Derivative recursions for the update step

The derivative recursions for the prediction step involve @X̂k=@ i and @�k=@ i from
the previous update step (k�1). The di�cult part is clearly the �rst derivative since
the functional relationship between X̂k and  is not de�ned explicitly.

We begin by noting that X̂k is the minimizer of the function (16) which implies
that X̂k is implicitly de�ned by:

@FNL

@X
(X̂k) = 0: (34)

In the present case, and because of (31), equation (34) may be reformulated as

0 = �2
"
��1
kjk�1

�
X̂k � X̂k�1

�
� @Zk(X̂k;  )

0

@X

n
yk � Zk(X̂k;  )

o
: (35)

Since (35) holds for any  , we can di�erentiate with respect to  i on both sides of
the equation, and solve for @X̂k=@ i. In this connection, note that the left hand side
of (35) is zero for any value of  . Furthermore, it is important to recognize that the
Nk � 1 vector

Z(X̂k;  ); (36)

and the Nk �m matrix

@Z(X̂k;  )

@X 0
(37)

depend on  in two ways. First, there is the direct dependence through the function
argument  . Second, the vector X̂k is itself an implicit function of  . Therefore, by
the chain rule, the total derivatives of the j'th element/row of (36) and (37) are given
by:11

@Zkj(X̂k( );  )

@ i
=

@Zkj(X̂k;  )

@ i
+

@Zkj(X̂k;  )

@X 0

@X̂k

@ i
(38)

@2Zkj(X̂k( );  )

@X@ i
=

@2Zkj(X̂k;  )

@X@ i
+

@2Zkj(X̂k;  )

@X@X 0

@X̂k

@ i
(39)

11When writing

@Zkj(X̂k( );  )

@ i

in (38) we mean the total derivative with respect to  i, whereas the notation

@Zkj(X̂k;  )

@ i

denotes the derivative with respect to  i for a �xed value of the �rst function argument X̂k. The
same principle applies in other cases, including (39).
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After taking derivatives with respect to  i on both sides of (35), and using equa-
tions (38) and (39), we arrive at:

0m�1 =

 
@�2

"

@ i
��1
kjk�1

� �2
"
��1
kjk�1

@�kjk�1

@ i
��1
kjk�1

! �
X̂k � X̂kjk�1

�

� �2
"
��1
kjk�1

@X̂kjk�1

@ i
+ �2

"
��1
kjk�1

@X̂k

@ i

�
NkX
j=1

(
@2Zkj(X̂k;  )

@X@ i
+
@2Zkj(X̂k;  )

@X@X 0

@X̂k

@ i

) h
ykj � Zkj(X̂k;  )

i

+
NkX
j=1

@Zkj(X̂k;  )

@X

(
@Zkj(X̂k;  )

@ i
+
@Zkj(X̂k;  )

@X 0

@X̂k

@ i

)
(40)

The next step is to isolate all terms in (40) involving @X̂k=@ i, and solve the
resulting system of equations, which yields

@X̂k

@ i
= C�1(X̂k;  ) b(X̂k;  ); (41)

where

C(X̂k;  ) = �2
"
��1
kjk�1

+
NkX
j=1

@Zkj(X̂k;  )

@X

@Zkj(X̂k;  )

@X 0

�
NkX
j=1

@2Zkj(X̂k;  )

@X@X 0

h
ykj � Zkj(X̂k;  )

i
;

and

b(X̂k;  ) =

 
�2
"
��1
kjk�1

@�kjk�1

@ i
��1
kjk�1 �

@�2
"

@ i
��1
kjk�1

! �
X̂k � X̂kjk�1

�

+ �2
"
��1
kjk�1

@X̂kjk�1

@ i
+

NkX
j=1

@2Zkj(X̂k;  )

@X@ i

h
ykj � Zkj(X̂k;  )

i

�
NkX
j=1

@Zkj(X̂k;  )

@X

@Zkj(X̂k;  )

@ i
:

Apart from a scaling factor, the matrix C(X̂k;  ) can be recognized as the Hessian for
the function (16). Since X̂k is the minimizer of (16), the matrix C(X̂k;  ) should be
positive de�nite, and hence invertible, which ensures a well-de�ned solution in (41).

This completes the di�cult part of obtaining analytical derivatives for the update
step, and we turn to @�k=@ i. With Hk = Cov("k) speci�ed as in (31), the MSE
matrix �k in (17) can be written as

�k = �2
"

 
�2
"
��1
kjk�1 +

Zk(X̂k;  )
0

@X

Zk(X̂k;  )

@X 0

!�1
� �2

"
D�1
k
(X̂k;  ); (42)
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and the derivative with respect to  i is given by:

@�k

@ i
=
@�2

"

@ i
D�1
k
(X̂k;  ) � �2

"
D�1
k
(X̂k;  )

@Dk(X̂k( );  )

@ i
D�1
k
(X̂k;  ); (43)

where

@Dk(X̂k( );  )

@ i
=

@�2
"

@ i
��1
kjk�1

� �2
"
��1
kjk�1

@�kjk�1

@ i
��1
kjk�1

+

@2Zk(X̂k( );  )
0

@X@ i

@Zk(X̂k;  )

@X 0
+

@Zk(X̂k;  )
0

@X

@2Zk(X̂k( );  )

@X 0@ i
(44)

The last matrix in (44), with the dimension Nk �m, can be obtained directly from
(39).

5.3 Computation of the likelihood function12

The k'th contribution to the log-likelihood function is given by:

logLk( ) = �Nk

2
log(2�)� 1

2
log jFkj �

1

2
v0
k
F�1
k
vk; (45)

where

vk = yk � Z(X̂kjk�1;  ) (46)

Fk =
@Z(X̂kjk�1;  )

@X 0
�kjk�1

@Z 0(X̂kjk�1;  )

@X
+Hk

� Z�

k
�kjk�1Z

�0

k
+Hk (47)

If we substitute Hk = �2
"
I into (47), and use a matrix inversion lemma known as

Woodbury's formula, see Harvey (1989), F�1
k

simpli�es to

F�1
k

= H�1
k
�H�1

k
Z�

k

�
��1
kjk�1 + Z�0

k
H�1
k
Z�

k

��1
Z�0

k
H�1
k

= ��2
"

�
I � ��2

"
Z�

k

�
��1
kjk�1

+ ��2
"
Z�0

k
Z�

k

��1
Z�0

k

�

= ��2
"

�
I � Z�

k

�
�2
"
��1
kjk�1 + Z�0

k
Z�

k

��1
Z�0

k

�
; (48)

and the determinant of Fk can be written as

jFkj = jHkj � j�kjk�1j � j��1kjk�1 + Z�
0

k
H�1
k
Z�

k
j

= �2(Nk�m)
"

� j�kjk�1j � j�2"��1kjk�1 + Z�
0

k
Z�

k
j (49)

The next step is to substitute (48) and (49) into (45), which gives

v0
k
F�1
k
vk = ��2

"

�
v0
k
vk �

�
Z�

0

k
vk
�0
D�1
k
(X̂kjk�1;  )

�
Z�

0

k
vk
��

(50)

log jFkj = (Nk �m) log(�2
"
) + log j�kjk�1j+ log jDk(X̂kjk�1;  )j ; (51)

12The computational approach outlined in sections 5.3{5.4 can also be applied (with advantage)
in the linear setting when Nk is much greater than m, and Hk is given by (31).
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where

Dk(X̂kjk�1;  ) = �2
"
��1
kjk�1 + Z�

0

k
Z�

k

is de�ned as in (42).
In (50) and (51) we only compute inverses and determinants of m�m matrices,

and we totally avoid inverting any Nk �Nk matrices. Roughly speaking, the number
of operations has been reduced from O(N2

k
) to O(Nk).

5.4 Derivatives of the likelihood function

The derivative of the k'th contribution to the log-likelihood function is given by:

@ logLk( )

@ i
= �1

2

@

@ i
log jFkj �

1

2

@

@ i
v0
k
F�1
k
vk: (52)

In the following we provide computationally e�cient formulae for each of the two
terms in (52).

5.4.1 Derivatives of the �rst term in (52)

First, note that

@ log jAj
@z

= Tr

 
A�1

@A

@z

!
; (53)

cf. Harvey (1989, p. 140). By applying (53) to the right hand side of (51), we obtain
the following:

@ log jFkj
@ i

=
Nk �m

�2
"

@�2
"

@ i
+ Tr

 
��1
kjk�1

@�kjk�1

@ i

!
+

Tr

 
D�1
k
(X̂kjk�1;  )

@Dk(X̂kjk�1( );  )

@ i

!

The derivative of �kjk�1 has already been calculated in the prediction step, see equa-
tion (33) above. We leave out the details regarding the derivative of the m�m matrix
D(X̂kjk�1;  ), as the requisite expression is completely analogous to (44), except that

it is evaluated at X = X̂kjk�1 instead of X = X̂k.

5.4.2 Derivatives of the second term in (52)

Straightforward calculations give

�1

2

@ v0
k
F�1
k
vk

@ i
= �v0

k
F�1
k

@vk

@ i
+
1

2
v0
k
F�1
k

@Fk

@ i
F�1
k
vk

= �w0
k

@vk

@ i
+
1

2
w0
k

@Fk

@ i
wk; (54)
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where

wk = F�1
k
vk = ��2

"

h
vk � Z�

k
D�1
k
(X̂kjk�1;  )

�
Z�0

k
vk
�i
;

and

@vk

@ i
= � @Zk(X̂kjk�1( );  )

@ i

= � @Zk(X̂kjk�1;  )

@ i
� @Zk(X̂kjk�1;  )

@X 0

@X̂kjk�1

@ i
: (55)

The derivative of the Nk �Nk matrix Fk is given by:

@Fk

@ i
=

@Z�

k

@ i
�kjk�1Z

�
0

k
+ Z�

k

@�kjk�1

@ i
Z�

0

k
+ Z�

k
�kjk�1

@Z�
0

k

@ i
+
@�2

"

@ i
I; (56)

where

@Z�

k

@ i
=

@2Zk(X̂kjk�1( );  )

@X 0@ i

=
@2Zk(X̂kjk�1;  )

@X 0@ i
+

mX
j=1

@2Zk(X̂kjk�1;  )

@X 0@Xj

@X̂kjk�1; j

@ i
:

Finally, if we substitute (56) into the second term in (54), we get

w0
k

@Fk

@ i
wk =

 
@Z�0

k

@ i
wk

!0
�kjk�1

�
Z�

0

k
wk

�
+
�
Z�

0

k
wk

�0 @�kjk�1

@ i

�
Z�

0

k
wk

�

+
�
Z�0

k
wk

�0
�kjk�1

 
@Z�

0

k

@ i
wk

!
+

@�2
"

@ i
w0
k
wk;

which only involves O(Nk) operations since we avoid directly computing (56).

5.5 An e�cient optimization algorithm

In our experience, the scoring or Newton-Raphson algorithm, combined with a trust
region strategy (instead of the usual line search), provides the best overall perfor-
mance. The iteration scheme is given by:

 i+i =  i +
h
H( i) + �iI

i�1 @ logL( i)

@ 
; (57)

where  i is the value of the parameter vector after the i'th iteration, and �i is chosen
adaptively by the trust region algorithm, see Dennis and Schnabel (1983, 1989) for
a detailed discussion. Compared to the line search method, the trust region method
is particularly e�ective in dealing with cases where H( ) is not necessarily positive
de�nite, such as the Newton-Raphson algorithm [Goldfeld et al. (1966)].

The matrix H( ) in (57) is either the Hessian (with the opposite sign),

�@
2 logL( )

@ @ 
; (58)
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or the expected value of this matrix. These cases correspond to, respectively, the
Newton-Raphson and scoring algorithms.

The exact Hessian (58) is computed by numerical di�erentiation of the analytical
score (52), whereas the \expected" Hessian is obtained from the approximation13

�E
"
@2 logL( )

@ i@ i

#
�

nX
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k
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+
1

2
Tr
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k

@Fk

@ i
F�1
k

@Fk

@ j

!
: (59)

Note that the right hand side of (59) only involves �rst order derivatives of vk and Fk
which are already calculated when computing the gradient of the likelihood function.
Furthermore, as we show in the appendix, we can avoid direct computations of the
Nk � Nk matrices in (59), i.e. F�1

k
and @Fk=@ i. This means that (59) can be

completed in just O(Nk) operations.
Our normal strategy for maximizing the quasi likelihood function is to start with

H( ) equal to the expected Hessian, i.e. the scoring algorithm. If the algorithm has
not converged after a prespeci�ed number of iterations, we switch to the Newton-
Raphson scheme and start computing the Hessian with �nite di�erences of the ana-
lytical score. The basic idea is avoiding the expensive Hessian calculations until we
are close to the maximum.14 In this context, it is worth emphasizing that the theo-
retical advantage of the Newton-Raphson algorithm, namely quadratic convergence,
only applies in a small neighborhood of the maximum.

5.6 Analytical derivatives | a worthwhile e�ort?

Admittedly, deriving analytical expressions for the �rst-order derivatives (gradient)
and the expected Hessian (cf. the appendix) is a time-consuming process, as is the
next step of implementing the requisite formulae in a computer program. However,
it is important to realize that most of the work is a one-o� investment. For example,
when estimating exponential-a�ne models (with prices of coupon bonds as data),
only the following parts of the computer program depend on the speci�c model under
investigation:

� The system matrices in the transition equation, �k0, �k1, and Vk, and the
derivatives of these matrices with respect to  i.

� The functions A(�) and B(�) in the measurement equation (12), as well as
derivatives of these functions with respect to  i.

13Contrary to the linear case, the right hand side in (59) is only an approximation to the expected
Hessian since E(vk j Yk�1) 6= 0 because of the linearization error. Of course, this problem does not
rule out that (59) is a good candidate for H( ) in the trust region algorithm (57). Speci�cally, note
that (59) is positive de�nite by construction.

14A more elaborate rule for switching between the scoring and Newton-Raphson algorithms could
be based on some \estimate" of the distance to the maximum. For example, we could use the
reduction in the norm of the gradient at the present iteration relative to an average of the previous
iterations. However, the simple rule outlined in the text works quite well, and in many cases
convergence is obtained prior to switching to the Newton-Raphson algorithm.
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The model-speci�c derivatives could even be computed by �nite di�erences without
any signi�cant loss of speed or accuracy.

Furthermore, there are really two major advantages of using analytical deriva-
tives when maximizing the likelihood function. We have already discussed the �rst in
our introduction to section 5, namely speed and accuracy. It is signi�cantly faster to
compute the gradient with analytical derivatives. Second, the optimization algorithm
discussed above is only e�ective when combined with analytical derivatives. Comput-
ing the Hessian without an analytical gradient is a very slow process, and although
the expected Hessian only involves �rst-order derivatives of vk and Fk, we can no
longer avoid computing (and multiplying) the Nk � Nk matrices in (59). Therefore,
we are probably better o� with optimization algorithms that only require �rst-order
derivatives of logLk( ), such the BHHH or BFGS (quasi-Newton) methods. How-
ever, in our experience, these algorithms tend to require more iterations to achieve
convergence than the scoring / Newton-Raphson algorithm.

6 Monte Carlo study of the QML-IEKF method

As discussed in section 4.3, the QML estimator derived from the IEKF technique is not
consistent. On the other hand, consistent alternatives seem to require exact �ltering,
either via numerical integration or MCMC methods, both of which are considerably
more time-consuming than the IEKF method. Therefore, if we can demonstrate
that the QML estimator performs well in �nite samples, including that the biases
are su�ciently small and economically insigni�cant, the IEKF method should still
be regarded as useful, the lack of consistency notwithstanding.15 We investigate the
issue in this section, focusing on the case where Gaussian term-structure models are
estimated using prices of coupon bonds.

Throughout, the simulated data consist of 1000 time-series observation, each con-
taining 10 bond prices for bullets with maturities of 1{5, 7, 10, 15, 20 and 30 years.
In most cases, the sampling frequency is weekly, corresponding to a sample period
of about 20 years. The coupon rates are 6% for the 1 and 2 year bonds, 7% for
the 3{7 year bonds, and 8% for the remaining bonds. With the parameter values
used below, this data speci�cation ensures that the bonds, on average, trade around
the par value of 100. The measurement errors, "ik are independently, normally dis-
tributed, N(0; �2

"
), where, unless otherwise noted, the standard deviation �" is 0.3,

or 30 basis points. For each model and parameter con�guration, we use 500 Monte
Carlo replications.

15One could argue that this pertains to all econometric estimators, whether consistency has been
demonstrated or not. Clearly, the asymptotic analysis does not apply to the �nite sample properties
unless the sample is su�ciently large, but what constitutes a \su�ciently large" sample varies from
case to case. Sometimes a few hundred observations, or even less, are su�cient, whereas in other
cases, even 5000 observations may not be enough. Pritsker (1996) presents an interesting example of
the latter case. In general, though, asymptotic properties are a useful starting point that, whenever
possible, should be supplemented by Monte Carlo studies.
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6.1 Vasicek model

First, we investigate the properties of QML for the one-factor Vasicek model,

drt = �(�� rt)dt+ �dWt; (60)

with a constant market price of risk �. As shown by Vasicek (1977), the price of a
zero-coupon bond is given by

P (t; t+ �) = exp [A(�) +B(�)rt] ;

where

B(�) =
e��� � 1

�
;

A(�) = �R(1) (� +B(�)) � �2

4�
B2(�);

and

R(1) = �� ��

�
� 1

2

�
�

�

�2

is the asymptotic interest rate, lim�!1� logP (t; t + �)=� . Prices of coupon bonds,
including bullets, follow in straightforward fashion from (12).

In Table 1, we consider six parameter con�gurations (cases) for the Vasicek model.
The starting point, case 1, has

(�; �; �; �; �") = (1:0000; 0:0650; 0:0300; �0:5000; 0:3000);

which implies that R(1) = 0:0796. We also explore the possible e�ect of a higher
sampling frequency (daily data) in case 2, and the magnitude of the measurement
errors, with �" equal to 10 and 100 basis points (cases 3 and 4, respectively). Finally,
in cases 5 and 6, we vary the speed of mean reversion, letting � = 0:25 and � = 2:0.
Here, � and � are recalibrated to ensure roughly the same unconditional variance of
rt and asymptotic interest rate, R(1), as in case 1.

The results of the Monte Carlo study are displayed in Table 1 where we report
the sample mean and standard deviations for 500 parameter estimates (replications).
Uniformly across all cases, the average estimates are very close to the true values. In
fact, when taking the standard errors and the number of replications into account,
there does not appear to be any discernible biases. The market price of risk parameter
� is estimated with least precision, but this is largely due to its correlation with �̂,
and R(1) is estimated very precisely.

If we estimate an AR(1) process, like (60), from a univariate time series of rt, the
maximum likelihood estimate of � tends to be biased upwards in small samples. As
in Ball and Torous (1996), there is no such bias when the term-structure model is
estimated with a panel data approach. This suggests that most of the information in
the data about � are associated with the cross-sectional properties of the model, that
is the shape of the yield curve.
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Judging from case 2, the sampling frequency only a�ects the standard errors for
� and �. This is to be expected, though, since 4 years of daily data contain less
information about the unconditional (long-run) distribution that 20 years of weekly
data. On the other hand, the linearization error for vk, which is really the main cause
of inconsistency for the QML estimator, cf. section 4.3, should be smaller for daily
data, but in the present case there are no biases in the �rst place.

The standard deviation of the measurement error, �", mainly a�ects the precision
of �̂. To explain this, note that by increasing �", the observed yield curve becomes
more erratic (less smooth), and hence less informative about �. Finally, a comparison
across cases 1, 5 and 6 shows that the relative precision of �̂ is greater for smaller
values of �, whereas exactly the opposite e�ect occurs for �̂ and �̂. The latter is
explained by the fact that weaker mean reversion is equivalent to less time-series
information about long-run properties, such as the unconditional mean �. At the
same time, for lower values of �, a change in rt has a larger e�ect on long-maturity
bond prices, and this should increase the cross-sectional information content about �.

6.2 Beaglehole-Tenney \double decay" model

Next, we turn to a two-factor model, originally proposed by Beaglehole and Ten-
ney (1991),

drt = �1(�t � rt) dt+ �1dW1t

d�t = �2(� � �t) dt+ �2dW2t;

where the Brownian motions W1t and W2t are correlated, with � denoting the corre-
lation coe�cient. The market prices of risk are constant, �1 and �2. The price of a
zero-coupon bond is given by:

P (t; t+ �) = exp [A(�) +B(�)rt + C(�)�t] :

As the closed-form expressions for A(�), B(�) and C(�) are rather lengthy, we refer
to S�rensen (1994) and Jegadeesh and Pennacchi (1996) for the requisite formulae.

Furthermore, since there are now nine parameters and two state variables, per-
forming the IEKF �ltering recursions, i.e. solving the non-linear GLS problem (16)
for each k, and computing the gradient of the log-likelihood function takes consid-
erably more time than in the one-factor Vasicek case. Therefore, we only consider
two parameter con�gurations in this part of the Monte Carlo study, both assuming
weekly data and �" = 0:30. The true parameter values are given in Table 2, along
with the sample mean and standard deviations of the QML estimates over 500 Monte
Carlo replications.

As in Table 1, the results are encouraging for the QML estimator although small
biases are noticeable in case I, especially for �̂1 and �̂1. Similar biases do not show up
in case II where �1 and �2 are smaller, corresponding to less mean reversion. Moreover,
as argued above, less mean reversion implies that long-term bonds contain more
information about the mean reversion parameters via the cross-sectional properties
of the term-structure model. Thus, the upward bias for �̂1 in case I most likely reects
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the usual small-sample biases that occur when estimating autoregressive parameters,
and not the QML-IEKF method as such.

Apart from this minor and economically insigni�cant problem, there is a close
resemblance between Tables 1 and 2 with respect to the performance of the QML
estimator. For example, the market prices of risk, �1 and �2, are estimated somewhat
imprecisely in Table 2, but this is clearly caused by a \multicollinearity" problem
since the asymptotic interest rate, R(1), is estimated very precisely.

7 Concluding remarks

The Monte Carlo evidence presented in section 6 is strongly supportive of the QML-
IEKF method as �nite sample biases are virtually non-existent, and key model pa-
rameters are estimated quite precisely (the risk premia being the usual exception).
The positive results should inspire further work in the area, especially in the following
directions. First, it would be interesting to study the properties of the QML-IEKF
technique for general exponential-a�ne models, such as multi-factor CIR models. As
discussed in section 4.2, non-Gaussian models present additional complications, and
the best solution to these problems is, by no means, obvious.

Second, while the present Monte Carlo study has focused on the properties of
the QML estimator for the (constant) model parameters, an equally important issue
in many applications is the performance of the �ltering algorithm. Thus, we should
compare the mean squared error (MSE) of the IEKF method to other �ltering meth-
ods, including (preferably) the optimal �lter. If the issue is discussed separately from
parameter estimation, a comparison of IEKF and the integration-based optimal �lter
is clearly computationally feasible, perhaps even for a two-factor model. Another
possibility, of course, is adapting the MCMC analysis of Fr�uhwirth-Schnatter and
Geyer (1996) to the state space model (10){(11). In any case, it is something that we
leave for future research.

25



Appendix

In the appendix we show how the expected Hessian (59) can be computed in O(Nk)
operations. The �rst term, involving @vk=@ i, can be rewritten as
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: (61)

Computing (61) for all elements of the expected Hessian matrix requires p matrix
multiplications

Z�
0

k

@vk

@ i
; for i = 1; 2; : : : ; p;

where p is the number of parameters, and p(p+ 1)=2 inner products of the form

@vk

@ i

0@vk

@ i
; for i = 1; 2; : : : ; p; j = i; : : : ; p

Note that the vector @vk=@ i follows from the gradient calculation in section 5.4, cf.
equation (55).

Speeding up the computation of the second term,
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is somewhat more involved. After rather lengthy calculations (expanding and collect-
ing terms) we obtain the following intermediate result:
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where
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Next, we multiply (63) for i and j, respectively, and after rearranging the result in
the same form as (63), we get
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The last six elements (matrices) in the sum within the braces in (64) have a
common structure. Speci�cally, each element is a Nk �Nk matrix of the form

Z1CZ
0

2 (65)

where Z1 and Z2 are Nk �m matrices, and the dimension of the middle matrix, C,
is m�m. The trace of (65) is given by

Tr [Z1CZ
0

2] = Tr [C (Z 0

2Z1)] ;

where the equality is obtained from a property of the matrix trace operator. In the
last expression we apply the trace operator to the product of C and Z 0

2Z1, each of
which are m � m matrices. When Nk is much larger than m, this is considerably
faster than computing the trace of (65) directly.
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Finally, by applying this idea in (64), we get

Tr

 
F�1
k

@Fk

@ i
F�1
k

@Fk

@ j

!
= ��4

"
�

(
Nk

@�2
"

@ i

@�2
"

@ j
+ Tr

h
Cij;1kZ

�0

k
Z�

k

i
+ Tr

"
Ci;2kZ

�0

k

@Z�

k

@ j

#
+ Tr

"
Cij;3k

@Z�
0

k

@ j
Z�

k

#

+ Tr

"
Cij;4k

@Z�0

k

@ i
Z�

k

#
+ Tr

"
Cj;5kZ

�
0

k

@Z�

k

@ i

#
+ Tr

"
Cj;6k

@Z�0

k

@ j

@Z�

k

@ i

#)

In summary, we have simpli�ed (62), which is given by the trace of a product four
Nk �Nk matrices, to applying the trace operator to a series of m�m matrices, each
of which can be computed in O(Nk) operations.
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Table 1:

Results of Monte Carlo study
Vasicek one-factor model

Case No. Parameter
(Freq.) �" � � � � R(1)

1 True 0.3000 1.0000 0.0650 0.0300 -0.5000 0.0796

(50) Mean 0.2999 1.0004 0.0650 0.0300 -0.5016 0.0795
S.e. [0.0022] [0.0120] [0.0055] [0.0008] [0.1863] [0.0000]

2 True 0.3000 1.0000 0.0650 0.0300 -0.5000 0.0796

(250) Mean 0.2999 1.0006 0.0655 0.0300 -0.4848 0.0795
S.e. [0.0021] [0.0142] [0.0107] [0.0010] [0.3583] [0.0000]

3 True 0.1000 1.0000 0.0650 0.0300 -0.5000 0.0796

(50) Mean 0.1000 1.0000 0.0649 0.0300 -0.5032 0.0795
S.e. [0.0007] [0.0040] [0.0055] [0.0006] [0.1861] [0.0000]

4 True 1.0000 1.0000 0.0650 0.0300 -0.5000 0.0796

(50) Mean 0.9997 1.0037 0.0653 0.0300 -0.4928 0.0795
S.e. [0.0071] [0.0402] [0.0056] [0.0016] [0.1879] [0.0000]

5 True 0.3000 0.2500 0.0650 0.0150 -0.3000 0.0812

(50) Mean 0.2999 0.2500 0.0643 0.0150 -0.3123 0.0812
S.e. [0.3000] [0.0010] [0.0109] [0.0003] [0.1829] [0.0000]

6 True 0.3000 2.0000 0.0650 0.0400 -0.8000 0.0808

(50) Mean 0.3000 2.0069 0.0651 0.0401 -0.7992 0.0808
S.e. [0.3000] [0.0038] [0.0038] [0.0017] [0.1954] [0.0000]

Notes: The simulated samples consist of 1000 time series observations, each contain-
ing 10 bond prices, all bullets with maturities of 1{5, 7, 10, 15, 20 and 30 years.

The number in parenthesis below the Case No. corresponds to the sampling frequency
of the data (time series observations per year).

For each case/parameter we report three numbers. The true value of the parameter
is displayed in the �rst line. The second and third lines contain, respectively, the
sample mean and standard error (in brackets) of the QML estimates from 500 Monte
Carlo replications.
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Table 2:

Results of Monte Carlo study
Double-Decay two-factor model

Case I Case II

True Mean True Mean
Parameter value [Std.Err] value [Std.Err]

�" 0.3000 0.2998 0.3000 0.2997
[0.0023] [0.0023]

�1 2.0000 2.0549 1.2500 1.2525
[0.2419] [0.0464]

�2 0.3000 0.2999 0.1000 0.1000
[0.0037] [0.0008]

� 0.0700 0.0691 0.070 0.0697
[0.0085] [0.0167]

�1 0.0300 0.0304 0.0200 0.0199
[0.0029] [0.0011]

�2 0.0100 0.0100 0.0100 0.0100
[0.0005] [0.0003]

� 0.5000 0.4986 -0.2500 -0.2483
[0.0671] [0.0475]

�1 -0.4000 -0.4216 -0.3000 -0.2921
[0.2234] [0.2172]

�2 -0.1000 -0.1179 -0.1000 -0.1041
[0.1947] [0.1734]

R(1) 0.0784 0.0784 0.0801 0.0801
[0.0000] [0.0001]

Notes: The simulated samples consist of 1000 time series ob-
servations (at the weekly frequency), each containing 10 bond
prices, all bullets with maturities of 1{5, 7, 10, 15, 20 and 30
years.

The sample mean and standard errors (in brackets) are com-
puted over 500 Monte Carlo replications.
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